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A COMPARISON OF DETERMINISTIC LOT SIZING TECHNIQUES

USING FOCUS FORECASTS OF STOCHASTIC DEMAND DATA
CHAPTER 1

INTRODUCTION

\ < Ne T
) e mad
basic concern of

any organization which manages

production or inventory is the question hHow much i.e.,
how much to produce or how much (inventory) to order? It is
a very easy question to ask but not quite as easy to
answer. (Saunders, 1987)

:&%e difficulty stems from the nature of ®consumer"
demand. Specifically, future demand is seldom known with
any degree of certainty {Tsadoy 1985a). Anticipated demand
is determined as best as possible wusing any one of a
multitude of forecasting techniques and only then<ﬂp1uggeé?
into a production lot size heuristic. Unfortunately, if one
subscribes to the theory that forecasts are usually wrong,
then the old adage, "garbage in, garbage out", would tend
to suggest there can never be an optimal solution.

*Most research in this area has therefore concentrated
on developing and/or modifying production lot size

heuristics in the hopes of providing the next best thing,

1
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i.e., the7$£zast wrondﬁfanswer. The result has been quite
an array of techniques varying in both size (complexity)
and scope (Ritchie and Tsado, 1986}).—

The problem left to industry 1is one of choice. Which
heuristic is best? Several studies have been performed in
an effort to answer this question as well. Some of éhééé
works include Benton and Whybark (1982); Callarman and
Hamrin (1979, 1984); De Bodt (1983); De Bodt and Wassenhove
(1983a, b); Tsado (1985a); Ritchie and Tsado (1986);
Wemmer 10v and Whybark (1984). Most of these works,
however, deal only with simulated demand data. And only
Tsado (1985a) uses empirical demand data to "validate" the
results obtained from simulated and published data.
Unfortunately, he generates the forecasts for demand
"artificially", i.e., given an analysis of the demand
pattern over the entire demand history.

The importance of validating theoretical results
(either analytical or simulated) should not be
underestimated. For example, Flores and Whybark (1986) in
their study of forecasting techniques have shown that
significant differences can occur between the results found
from synthetic, i.e., simulated, data and those obtained
from empirical data. They state, "...the message to
researchers rings clear: be careful in drawing "real-world"
conclusions from laboratory data." Amar and Gupta (1986)

state very much the same thing regarding their study of

]
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simulated and empirical demand on production scheduling
algorithms: "Final claims about the superiority of [a]
proposed methodology... can be settled only after
sufficient experience with real life situations."

Further, all of these studies combined shortage costs
(if included) and inventory and setup costs in the total
cost calculation. As shortages may imply different "costs"
to different organizations, it would be interesting to
analyze these two types of costs separately. The need for
further wvalidation of previous studies of 1lot sizing

techniques is therefore justified.




CHAPTER II

oy & LITERATURE REVIEW
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This apteé%%rov1des a review of the 1literature on
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basic 1lot sizing techniques and their app ication to
stochastic demand. Material covering the lot size
algorithms and forecast models used 1in this study is

presented in Chapters III and IV, respectively. V«'~;_:4
/\,‘\C\‘*\‘\;‘(;*\' 0\ W\CL_,\ j B DR b \0\ )‘\ Oy ‘\,‘\"\\A‘ Sy | T

Determlnistic Demand Models

In order to determine what the optimal answer is to the
question, "How much?", one must first examine the type of
demand to be modeled. The most tractable demand model is,
of course, constant or level demand. Therefore, 1if the
relevant fixed costs (generally order or setup costs) and
variable costs (generally inventory holding costs) are
known, and:

1. demand is constant and deterministic,

2. the order quantity is assumed a continuous

variable,

3. there are no quantity price breaks,

4, costs are relatively stable,




5. replenishment/production lead time is zero, and

6. no shortages or back orders are allowed,

the optimal (most economic) production or order quantity is
easily derived by minimizing the total relevant costs (TRC)

per unit time, i.e.,
TRC(Q) = wvariable cost + fixed cost = Q h/2 + A D/Q

where Q 1is the order or production quantity, h 1is the
inventory holding cost expressed as cost per unit per
period, or $/unit/period, A is defined as the fixed set-up
or order cost, and D 1is the demand rate of the item in
units per unit time (from Silver and Peterson, 1985).
Specifically, this economic order quantity, or EOQ, 1is

given as:
EOQ = (2 AD / h)?

Once we relax the assumption of level demand and allow
time variance, however, the EOQ is no longer guaranteed to
provide an optimal solution.

This assumption of constant demand is one of the first
problems we encounter with the basic EOQ model. Few
manufacturers, suppliers, or retailers can expect to have

requirements for exactly N units of a product every period




over the entire product's life cycle. In fact, one would
expect demand to (hopefully) increase from zero when a
product 1is introduced, stabilize once initial demands are
satisfied, and then (unfortunately) decrease as the product
becomes obsolete. And, generally, this is the case.

Hofer (1977) defines the fundamental stages of
product/market evolution similarly. However, all stages
basically fall into three categories: 1linearly increasing
demand, level demand, and linearly decreasing demand
(Chalmet, De Bodt, and Van Wassenhove, 1985). These time
varying levels of demand render the once optimal EOQ model
to the 1level of a mere heuristic. (A heuristic 1is an
algorithm which gives near optimal problem solutions.)

Although the Wagner and Whitten (1958) dynamic
programming approach to the time varying demand model is
guaranteed to provide an optimal solution, many authors
feel this method is too complicated for general industrial
use (McLaren, 1977; Silver, 1981; Wagner, 1980). In
addition, the Wagner-Whitten algorithm may provide
sub~optimal results when used in the context of a rolling
demand horizon as normally used in industry (De Bodt and
Wassenhove, 1983a). This "sub-optimality" results from
violation of the assumption that demand after the last
period in the horizon is zero. It is interesting to note,
however, that objections to use of the Wagner-Whitten

technique have steadily declined in the past several years




primarily due to the general increase in the power of
microcomputers and the advent of such efficient high level
languages as C and PASCAL (Saydam and McKnew, 1987 ; Evans,
1985).
As a result, most work in this area has involved the
development, test and evaluation of a multitude of
(generally) simple heuristic policies 1in an attempt to
provide solutions as "near-optimal" as possible. Some of
these heuristics include EOQOQ, Silver-Meal, part-period
balancing (Eisenhut), and least total cost to name a few.
All heuristics can be divided into three general
classifications, specifically:
1. EOQ rules (which trade off order costs and
holding costs per unit time, e.g., discrete EOQ),

2, Marginal cost rules (which equate marginal
order and holding costs per period, e.g.,
Silver and Meal, 1973), and

3. Target rules (which set holding costs equal to a
target, e.g., the part-period balance algorithm
which increases the production lot size until the
holding cost reaches a target equal to the
ordering cost)

(From Wemmerlov and Whybark, 1984).

Several studies have shown that various heuristics

will perform differently under different types of

conditions. 1In particular, Ritchie and Tsado (1986) have




shown the best, most robust 1lot-size heuristics to be
marginal cost (Groff, 1979), the simplified part-period
(balance), and Silver-Meal algorithms. Further, they show
that switching from one rule to another is not worthwhile,
meaning it is generally better to use a good rule to begin
with.

Therefore, given deterministic, time varying demand,
the question of how much to produce or order seems to be
relatively easy to answer. Unfortunately, we encounter a
second problem with our assumptions on demand.
One rarely knows with any certainty what future demands

will be (Tsado, 1985a).

Stochastic Demand Models

Solution of the EOQ or lot size problem for stochastic
demand is very difficult. As a result, most research in
this area has focused on the relative performance of
algorithms designed for deterministic demand as applied to
stochastic demand over a rolling horizon (Benton and
Whybark, 1982; Callarman,1979; Callarman and Hamrin, 1979,
1984; De Bodt and Wassenhove, 1983; Tsado, 1985a; Wemmerlow
and Whybark, 1984).

By rolling horizon, we mean that "lot sizing takes
place over a fixed number of periods, the forecast horizon,

and that only the first period's decision is implemented.

Next period, a new fixed horizon problem is made, etc.

(Baker and Peterson, 1979)." (From Wemmerlov and Whybark,




1984.) The forecast horizon, in turn, is based on mean

time between orders, or TBO, given by:
1
TBO = ([(2 A)/(D h)]?

where A 1is the setup or holding cost, D 1is the average
forecasted demand, and h 1is inventory holding cost. TBO,
therefore, is dependent on the inventory ratio, i.e., A/h.

There is no one consensus on what values of A/h to
use. In a problem presented by Berry (1972) and later used
by many others, the value was 152.5. De Matteis (1968),
on the other hand, used a factor of 100. (From Heemsbergen,
1987.) Tsado (1985) used a wide range of values,
specifically:

7.5 10.0 30.0 50.0 70.0
90.0 110.0 130.0 150.0 170.0

Ritchie and Tsado (1986) used a value of 400! The reasons
why the literature is so inconsistent are not quite clear,
however the reasons for using such a broad range are.
DeBodt and Van Wassenhove (1983) have shown that various
ranges of TBOs will 1lead to different costs even when
forecast error is small. Specifically, smaller values of
TBO 1lead to larger percentage cost increases. Studies by
Blackburn and Millen (1980) suggest that a forecast horizon
of 3 TBO is sufficient to minimize cost increases due to a

small forecast horizon, but only for heuristic procedures.
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Due to the sensitive nature of the Wagner-Whitten
algorithm, Lundin and Morton (1975) suggest a forecast
horizon of 5 TBO to ensure a cost performance that is
within 1% of the "optimal" for an infinite horizon
(Wemmerlov and Whybark, 1984).

Callarman and Hamrin (1979), in one of the earliest
studies of stochastic demand, compared the relative
performance of six well-known heuristics (such as the EOQ,
part-period, and Silver-Meal algorithms) under conditions
of uncorrelated forecast errors and fixed lead times while
using the coefficient of demand variation (s/m) and time
between orders (TBO) as experimental factors. Their basic
conclusion was that no single lot sizing rule was "best"
under all conditions. They did rank the heuristics,
however, with Wagrer-Whitten coming out on top, followed
closely by the EOQ, and ending up with Silver-Meal as one
of the poorer performers. They also noted that total costs
tended to increase with forecast error resulting in smaller
differences 1in the relative performance of the heuristics.
Callarman (1979) reaffirmed these results for an inventory
model which, unlike the previous study, explicitly included
stockouts. (From Tsado, 1985a, and Wemmerldv and Whybark,
1984.)

Benton and Whybark (1982) confirmed the results of
Callarman (1979) and Callarman and Hamrin (1979).

Specifically, their study of three lot sizing techniques
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(using uncorrelated forecast errors and varying such system
parameters as level of uncertainty), showed a negative
correlation between relative heuristic performance (in
terms of cost) and forecast error, i.e., as forecast error
increased, the differences in cost performance of the three
heuristics decreased. (From Wemmerlov and Whybark, 1984.)

De Bodt and Wassenhove, in two separate studies,
reported findings similar to those previously mentioned.
Their first study (1981) examined the relative performance,
both analytically and via simulation, of the
Wagner-Whitten, Silver-Meal, and least unit cost
algorithms. Using simulated constant demands injected
with white noise and forecasted using exponential
smoothing, they showed that cost differences were
negligible even when the amount of forecast error was
small. Although the assumptions on demand were rather
restrictive, the simulation results bore out the analytical
results regarding expected cost increases due to forecast
error.

Their second study (De Bodt and Van Wassenhove, 1983a)
used actual demand data but was also a simulation effort in
that the forecast error was generated artificially. Their
conclusions were essentially the same (i.e., Silver-Meal,
part-period, least unit cost, and EOQ, adjusted to cover
integral periods of demand, performed equally well),

however they did state a preference for the basic EOQ model
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when used in a multi-stage environment. These results are
interesting in that some of the operating conditions were
different from those used in earlier research.
Specifically, the authors assumed zero lead time and that
the forecast error for the next period's demand was zero
(implying zero probability of a stockout). These
assumptions were made in order to make the analyvtical study
tractable.

The following vyear, Wemmerldv and Whybark (1984)
presented a comprehensive study of 14 single-stage lot
sizing techniques using demand uncertainty in the form of
forecast errors introduced via simulation. The operating
conditions are similar to those used by Benton and Whybark
(1982), Callarman (1979), and Callarman and Hamrin (1979).
However, they do incorporate non-zero lead times. Their
most important results are quoted as follows:

"l. Relative cost performance is strongly affected by
the introduction of forecast errors. The magnitude
of these errors, however, is not significant.

2. The Wagner-Whitten procedure loses its position as
the least cost rule (as in the deterministic
demand model).

3. Only two rules, [Wagner-Whitten] and WMR3
[suggested by Wemmerlov (1981)]), remain on the
list over the six best rules overall (from the
list of best performers in the deterministic

demand model).

4., The relative advantage of [Wagner-Whitten]
compared to the other rules decreases.
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5. The performance of the EOQ rule improves
dramatically. This is, no doubt, due to the
non-discrete character of this rule, leading to
the ordering of a larger quantity than what is
needed over an integer number of periods. In
effect, then, the EOQ rule carries with it its own
safety stock.

6. A wider choice of lot-sizing rules is available
when compared to the ‘no uncertainty' case. Not
only are there no differences, from a statistical
standpoint, among the six best rules, but the cost
penalties for several of the other heuristics are
quite small. This can be contrasted to the case
with no demand uncertainty, for which (Wagner-
Whitten)... emerge[s] as being significantly
better than the other rules."

They further point out that their simulation results
seem to justify current industry practice. Specifically,
Wagner-Whitten is not applied in industry (primarily due to
complexity and "system nervousness" as shown in their
study). The EOQ and Eisenhut algorithms, on the other
hand, are widely wused. Previous studies involving
deterministic demand would lead one to believe this is bad
practice. However, "if it 1is acknowledged that the
‘forecasts are always wrong', then current industry
practice seems to be justified." In other words, the
question of which 1lot sizing technique is the "best"
becomes moot; a simple technique will probably suffice.

Tsado (1985a) concurs with the results of Wemmerlov and
Whybark (1984). However, he recognizes a serious
limitation to their work and to the work of those that

preceded them. All of these studies involved the use of

simulated demand data and/or simulated forecast errors.
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"While simulation is an important tocol for analysing
problems that requires (sic) complex mathematical
solutions, it could lead to different results by
different users, if there are differences in the way
the data was simulated, or in the demand
characteristics of the data. Moreover, simulations
cannot always explain all the peculiarities of real
life experience."

Additional problems with the previous works are:

1. Each study uses different versions of the
part-period balance (see Heemsbergen, 1987).

2, There were contradictions in some of the initial
assumptions (discussed previously).

3. All forecast errors were assumed to be unbiased.
However, in actual practice forecasts may be
biased.

4. Forecasting techniques (exponential smoothing,
regression, etc.) were not used.

Tsado's (1985a) study therefore attempted to examine
the possible interactions between demand pattern and lot
size performance, lot-size technique and forecasting
technique (or forecast parameters), and uncorrelated
forecast errors and 1lot-size performance. His results
follow:

"l. Forecast errors have tremendous influence on

the performance of the heuristic policies
even when these forecast errors are small.
2. With the exception of the incremental cost
approach, the cost differences between a
number of heuristic policies is small. This

contrast(s) with the case of deterministic
time varying demand function for which there
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were significant differences between the
performance of the heuristic policies.
3. The magnitude of the trend in demand and the
type of forecasting technique used seem to
have insignificant influence on performance...."

Tsado (1985a) hoped to validate the previous work on
lot-sizing techniques (as well as compare his own heuristic
developed specifically for stochastic demand), and, on the
surface, it appears that he did. 1In the case of simulated
data, he used (linear) exponential smoothing. He broadened
his scope on the published data by including the use of
Winter's seasonal forecasting model. He restricted his use
to (linear) exponential smoothing once again for the actual
demand data. His reasoning was that "these forecasting
methods were (appropriate) because they provided reasonable
forecasts." Unfortunately, Tsado limited his application
of these forecasting techniques by using the entire demand
history available to him to fit his forecast.

Industry, on the other hand, does not have this
ability. 1In other words, forecasts are based on a limited
demand history (if at all) and are then updated
continuously over the "rolling horizon", i.e., from period
to period. Tsado's methods therefore do not seem
reasonable. What methods, then, are reasonable?

Makridakis, Andersen, Carbone, Fildes, Hibon,
Lewandowski, Newton, Parzen, and Winkler (1982) established

the following:




16

1. Knowledge of the underlying demand pattern of a
time series does help in choosing a model.

2. Simple models seem to work well, especially when
the basic series is changing or in the absence
of prior knowledge as to the underlying
structure of the demand pattern.

3. Under the conditions where simple models work well,
the average of the forecasts from several simple
models was superior to the forecast from a single

model.

Flores and Whybark (1986), however, proposed a
different method. A practitioner developed approach, this
method, called focus forecasting, involves the selection of
the one forecasting model which would have performed the
best 1in the recent past to make the next forecast. As a
result of continuous updating of all forecasting models,
the choice of forecasting method may vary from time to
time.

They compared both techniques (average vs. focus
forecasting) using both synthetic (simulated) and empirical
(actual) demand data. The method of averaging performed
best on the synthetic data. More importantly, there was no
significant difference in the relative performance of forus
forecasting and forecast averaging when used on empirical

data. The authors believe this is due to the higher mean
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average deviations (MADs) characteristic of actual demand.
In other words, "empirical time series are far more
difficult to forecast than the synthetic".

It is 1important to note that none of the seven
forecasting techniques used for both focus forecasting and
forecast averaging used any form of regression, exponential
smoothing, Winter's method, or ARIMA modeling (although a
simple moving average of 3 and 6 months was used). They
did, however, compare the focus and averaging techniques
with exponential smoothing (as a common basis of
comparison) and observed that exponential smoothing
generally outperformed both although the significance was
not as great for the empirical demand data. It would
therefore be interesting to apply focus forecasting to the
more sophisticated exponential smoothing models.

Additionally, all of the aforementioned studies
combined shortage costs with inventory holding and setup
costs. (Some authors incorporated an arbitrary service
level wusing a predetermined amount of safety stock.)
Wemmerlov and Whybark (1984) point out two approaches. One
is to set stockout costs as a separate factor. However,
they state that the results might not be meaningful when
compared to other studies. The other, wused by all of the
studies cited, sets service levels via an appropriate
amount of safety stock and quantifies only the inventory

holding and setup costs.
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A basic assumption for this method to be valid is that
the "cost" of a stockout is the same for everyone. Another
is that each heuristic employed performs the same for
relative shortage costs as they do for relative inventory
costs. These assumptions may not be valid, therefore it
may be appropriate to look at these two types of costs
separately.

Bookbinder and H'ng (1986) employed both forecasting
methodology and stockout costs (separate from the standard
inventory costs) in their study of rolling horizon
production planning. Their main emphasis, however, was on
the procedure for probabilistic production planning and not
on the relative performance of the lot sizing rule employed
within the procedure.

And finally, the baseline used in the previous studies
on lot size algorithms to determine relative cost increases
for each heuristic 1is questionable. Most of these works
(including Wemmerlov and Whybark, 1984) used the
WagnerWhitten heuristic (i.e., given stochastic demand) as
the baseline. Tsado (1985a) employed the EOQ "heuristic".
But this is like trying to measure distance with a rubber
ruler!

It is suggested that, in order to minimize the "error"
inherent in such an approach, the optimal Wagner-whitten

solution given a-priori knowledge of the demand "history"
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should be used. The increase in cost due to the heuristic
using forecast demand can then be thought of as the
expected value of perfect information (EVPI). EVPI may be
thought of as the maximum amount of money one would be
willing to pay for perfect knowledge of the future. This
approach should not only minimize the error in the design
model, but should also be intuitively more appealing. (See

Raiffa, 1968.)

Research Goals

There is a need for a study which forecasts empirical
demand in the same manner ir .nich the 1lot sizing
algorithms are implemented, i.e., over a rolling horizon.
For the purposes of this study, a system of focus
forecasting is used.

Further, shortage costs need to be analyzed separately
from inventory and setup costs since (1) shortages have
a "variable" cost, and (2) the various algorithms may
perform differently when shortages are treated as a
separate entity.

Finally, validation of the stochastic heuristic

presented by Tsado (1985a, b) is required.




CHAPTER III
LOT SIZE HEURISTICS

The 1lot size heuristics described are those developed
for deterministic or discrete demand. As stated, there are
three basic categories of lot size algorithms: EOQ-based,
marginal cost-based, and target-based. The algorithms used
in this study for each category are the standard EOQ,
Silver-Meal, and part-period balance methods, respectively.

Also presented are Wagner and Whitten's (1958) dynamic
programming method which is used as both an optimal
baseline for cost comparison and as a separate lot size
heuristic (when solved for forecast demand) and Tsado's
(1985a, b) stochastic lot size heuristic. Although various
refinements exist for all the heuristics 1listed, the

simpler versions were used in the study.

Eisenhut
The part-period balance algorithm, hereinafter referred
to as Eisenhut's lot size heuristic, determines the number
of periods to order or produce by selecting that period for

which holding cost most closely approximates the setup

20
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or ordering cost.

Using the example provided by Silver and Peterson
(1985), 1let the setup cost = $54, holding cost = $0.40 per
unit per period, and demand be given by D; = {10, 62, 12,
130, 154, 129} for the first 6 periods. The algorithm

yields

n
o

T=1: Holding

=2: Holding $24.80 < $52.00

Dsh

T=3: Holding $24.80 + 2D3h $34.40 < $52.00

T=4: Holding $34.40 + 3Dgh

$190.40 > $54.00

Therefore since

[34.40 - 52.00] = 17.60 < |52.00 - 190.40| = 138.40

we produce for 3 integral periods.

EOQ

The economic order quantity, derived earlier, is
non-optimal for the case of non-constant, or time-varying,
demand. To be used as a heuristic in the case of
stochastic demand, the average of the forecasted demand is
used in the model.

Using the same example where Dj is a 6-period
forecast, average demand is approximately 83 units.

Therefore
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Q¥ = (2 x 52.00 x 83 / 0.40)% = 147 units

where Q* is the "optimal" order quantity defined by the
standard EOQ formula. Notice that the simple form of EOQ
provides a non-integer time supply which, in effect, acts

as an automatic safety stock (Tsado, 1985a).

Silver-Meal

Silver and Meal (1973) proposed a heuristic for
time-varying, deterministic demand which uses the concept
of marginal cost, i.e., it attempts to minimize total
relevant costs per unit time (a quantity which we will

refer to as TRCUT). Expressed as a function of time,

TRCUT(T) = (A + o ((t-1) D¢ h)] / T

where A is the setup cost and T ((t-1) D¢ h) is the
total carrying cost to the end of period T. Selection of
the "optimal" number of periods to include in the
replenishment occurs when TRCUT(T+1l) > TRCUT(T). Using our

previous example:

T=1: TRCUT(1)

54.00/1 = $54.00

T=2: TRCUT(2) = (54.00 + 1 x 62 x 0.04) / 2 = 39.40
T=3: TRCUT(3) = (78.80 + 2 x 12 x 0.04) / 3 = 29.47
T=4: TRCUT(3) = (88.40 + 3 x 130 x .04) / 4 = 61.10
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and we select a replenishment quantity which will cover 3

periods.

Tsado

Tsado's (1985a) stochastic heuristic is primarily a
modification of the EOQ which incorporates the idea of
minimizing total relevant costs for a given replenishment
cycle while keeping track of previous costs. As this
method is generally unknown, more will be said regarding
its derivation.

The assumptions used in the derivation are (1) no
shortages are allowed, (2) demand for the next period is
known with certainty, (3) all other periods are forecast,
(4) a replenishment occurs in period t if demand cannot
be satisfied for period t+l1, and (5) demand is assumed to
be steady and continuous. The first two assumptions are
basically equivalent and neither is used in this research,
i.e.,, we allow shortages.

Tsado (1985a) first derives an equation for the
expected increase in stockholding costs, Stg, given that
(1) lead time is zero, (2) replenishment occurs
instantaneously, and (3) stock at the end of the

replenishment interval is zero. Specifically,

Ste =h DL/ 2
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where h 1is the inventory holding cost in $/unit/period, D
is the rate of demand (continuous), and L 1is the length
of the replenishment interval. Note that, although the
formula is derived for the continuous model, the heuristic
is applied discretely, i.e., to periodic demand.

He then shows, given L = T - t (since we wish to

satisfy demand up to the horizon, T), that

Ste = LZDh /2= (T - t)2D h/2

where St and L are as previously defined, D 1is the
current forecast of demand or its average, h is as
previously defined, T is the last period in the forecast
horizon, and t 1is the period of the present setup.

This implies that total relevant costs at time T may

be written as

TRCUT(T) [ Z¢ + (T-t)2Dh/2+S 1 /T

(Z¢ + S)/T+ [T -2t + t2/T 1 D hy2
where 2Z¢ 1is the total inventory cost (holding and setup)
up to time t and S 1is the fixed cost of the setup.

Taking the derivative with respect to T,

dTRCUT(T)/dT = - (Z¢ + S)/T2 + (1 - t2/72) D h/2
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which set to zero yields
2 Py
T = [ t° + 2(Z¢ + S)/Dh ]2
Since L=T-1t¢ and the replenishment quantity, Q,
is equal to the average forecast of demand, D, times the

replenishment interval, L, Tsado's 1lot size formula

becomes

Q = DL =D (T-t) = DT - Dt = ~(Dt) + DT

(-Dt) + [ (Dt)2 + (2D (Z¢ + S)) / h)?

When t=0, this equation reduces to the simple EOQ
formula, therefore the first setup for our example will be

identical to that obtained previously.

Wagner-Whitten

Wagner and Whitten's (1958) algorithm is a dynamic
program which provides an optimal solution to the discrete,
time-varying lot size problem. When used as a heuristic
for the stochastic demand model, the algorithm computes the
"optimal” solution over the forecast horizon using the
forecasted demand. Using our example, the Wagner-Whitten
procedure and solution are shown in Table 1.

The column signifies the period where a setup occurs

and the row gives the current period we are looking at.
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2 52.00 52.00
24.80, 52.00
76.80 104.00

3| 76.80 104.00  76.80
9.60,  4.80  52.00
88.40° 108.80 128.80

4 88.40 113.60 128.80 88.40
156.00 104.00 52.00 52.00,
244.40 217.60 180.80 140.40

5 140.40 140.40
61.60 52.00
202.00 192.40

6 192.40 192.4
51.60, 52.00
244.00 244.40

—— e e - e S — —— — —— T ——— — . —— — T —— — A ————— ———— Y ——— ————— ———— —

Table 1. Wagner-Whitten Procedure

The figure in row 1 and column 1, referred to as (1,1),
gives the total cost in period 1, i.e., the cost of the
setup.

Cost (2,1) gives us the total cost if we produce enough
in period 1 to cover periods 1 and 2, whereas (2,2) is the
total cost if we produce in both periods. The first number
at each point in the matrix gives the total inventory cost
(setup and holding) from the previous period. The second
number provides the inventory holding cost of the current
period (if we had produced in the previous setup for that

period's demand) or the setup cost as required.
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The asterisk shows the "optimal" policy for the current
period, and, except for the policy where we "test" for a
setup (which 1is given on the diagonal), that cost is
carried over to the next period we wish to look at (every
(i,j) "period" where j < i).

The Wagner-Whitten theorem states that, once the
optimal policy occurs in column j, calculations may be
discontinued for any column i where i < j.

In general, a cost C(i,j), means that we set up in
period j to produce demands for periods j, j+l,..., 1i,
and that the demands for periods 1, 2,..., 3j-1 are
produced by an optimal policy.

Unlike the previous heuristics, the Wagner-wWhitten
algorithm must be used over the entire forecast
(time-rolling) horizon, but, 1like the others, only the
first period's decision is implemented. Cost calculations
are carried out in the same manner as in the other
heuristics.

The "optimal" Wagner-Whitten solution is read backwards
through the matrix using the "starred" costs as a guide.
For our example, we show setups in periods 1, 4, and 5 and
would produce in the first period for periods 1, 2, and 3.

Note that optimality of the Wagner-Whitten procedure is
no longer guaranteed since the assumptions of deterministic
demand and zero demand after period T, where T 1is the

planning horizon, are violated.




CHAPTER IV
THE FORECAST MODEL

Time series analysis involves developing forecasts of a
variable entirely from its past history. These techniques
generally model the variable in such a way that past
patterns in the data series are used to help modify the
mean and thereby predict future values. Although past
performance is no guarantee of future performance, time
series methods are generally successful in statistically
stable conditions, for short-term forecasts where there is
insufficient time for substantial change barring
catastrophes (as in our current study), as a base forecast
for judgemental models, and for screening data in order to
better understand the variable being fo}ecasted (Barron and

Targett, 1985).

Introduction

Jenkins (1979) describes five classes of time series

models. These are:

1. univariate models in which a single variable is
forecast from its own past history,

28
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2. transfer function models which add inputs from

other variables,

3. intervention models which represent unusual events

such as strikes, etc.,

4. multivariate stochastic models which represent

several series with mutual interaction, and

5. multivariate transfer function models which
relate several output variables to several input

variables in which a relationship exists.

Univariate models, although of an elemental nature, are
important from a forecasting viewpoint for several reasons.
First, they may be the only model which 1is the only
practical approach based on the magnitude of the problem.
Second, VY.it may be impossible to find, or there may not
exist, wvariables related to the one being forecast. Third,
when multivariate models exist, the univariate model may be
used as a baseline to measure the other's performance. And
finally, the presence of large residuals (the difference
between actual values and the "stationary mean") may
correspond to strikes, faulty data, etc. and therefore act

as a tool to screen data. In spite of these points,




30

however, it must be recognized that univariate models are
generally valid for short-term forecasts only (Ibid.). As
all of the studies mentioned in Chapter II utilized
univariate forecasting methodology, this discussion will
be restricted to procedures in this area.

Univariate models are classified by Barron and Targett
(1985) according to the type of series to which they can

be applied. These are:

l. stationary (random variation about a mean or a
series which may be modeled as a stochastic

"random walk"),

2. trending (a consistent movement either upwards or

downwards in the series),

3. seasonal/cyclical (a series which exhibits a
pattern over a number of time periods where
seasonal implies a period of a year or less and
cyclical refers to a pattern greater than one

year), and

4. seasonal and/or cyclical with a trend (a complex

of seasonal and/or cyclical patterns and trends).
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The last three classifications may be grouped under the
heading of non-stationary time series. Johnson and
Montgomery (1976) state that the basic goal in any
univariate time series method is to reduce the residuals,
or error, to a normally distributed random variable with
mean zero and constant variance (also known as "white
noise"). In other words we seek a stationary model from a
non-stationary time series. (See Hoel, Port, and Stone,
1972.)

There are two general types of time series forecast
methods, those involving smoothing techniques and those
involving autoregressive parameters, generally referred to
as ARMA (p,q) models. Johnson and Montgomery (1976)
suggest that ARMA models should be considered only when
there exists a sufficient amount of demand history for
analysis, typically around 36 periods or more. Since large
amounts of demand history from the same environment may not
always be available and previous studies have not utilized
ARMA models, ARMA models were not considered for use in the
current study.

Further, since lot sizing is performed on a rolling
horizon, forecasting should be performed on the same basis.
Therefore, we will restrict ourselves to exponential
smoothing models when applied to the concept of focus

forecasting.
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Exponential Smoothing

Smoothing techniques (or models) replace the original
time series by a "smoothed" one, i.e., one produced from
statistical or weighted averages of values from the
original series in an attempt to reduce or discount the
random fluctuations or variance. Generally, the 1last
smoothed value(s) provide(s) the forecast for all future

time periods in the (rolling) forecast horizon.

Simple Exponential Smoothing Model
The simplest case is, of course, when the time series

is already stationary, i.e., it may be represented by

Xt = m + eg

where m (or mu) is the statistical mean of the time
series and et is the error or difference between the mean
and the actual value of the data point. Two techniques
which deal with such stationary models are moving averages
(not discussed) and simple exponential smoothing.
Exponential smoothing assumes that recent data is more
important than o0ld data; a concept which 1is rather
intuitively appealing. Then, based on the relative value
attached to the significance of the residuals, it computes
a smoothed "average" of the data. Specifically, the model

states




33

St = (1 - a) Sg-1 + a x¢

where St is the new smoothed value at time t, S¢-31 is
the old smoothed value at time t-1, x¢ is the most
recent actual value, and a (or alpha) is a weight chosen
by the forecaster such that 0 < a < 1. Obviously, the
larger the value of alpha the more weight will be attached
to the most recent data point.

To see this, one merely needs to expand the equation

for all "N" which yields

St = a x¢ +a (l-a) xg-1 + a (1-a)2 x¢-3 + ...

where the weights given to the data points from the most
recent to the most distant are a, a (l-a), a (1—a)2, and
so forth (Barron and Targett, 1985). Since both a and
(1-a) are less than one, the weights are decreasing
monotonically with time.

Silver and Peterson (1985) rewrite the exponential

smoothing model to obtain

S¢ = Sg-1 + a (x(t) - S¢-1) = Sg-1 + a et

where all variables are as previously defined. This

implies the new forecast value is equal to the old forecast
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value minus a fraction of the most recent error. 1In other
words, the exponential smoothing model assumes that a
portion of the last forecast error, namely (l1-a) is due to
some random fluctuation and the other portion, namely
alpha, is due to some real shift in the value of the
estimate. In practice, the value of alpha usually ranges

between 0.1 and 0.4 (Ibid.).

Holt's Exponential Smoothing Model
Now consider time series which are initially
non-stationary but which can be made stationary by

differencing. By differencing we mean

DEL S¢ = 8t = S¢-d

where DEL 1is the differencing operator and d 1is the
period of differencing. For a strictly trending time
series, a difference of d=1 will yield a stationary time
series.

To see this, one must first examine the statistical
significance of trending and seasonal data. When a time
series trends, the values between successive data points
are highly correlated. (Since the time series is
correlated with itself, a more appropriate term is
"autocorrelated".) The same 1is true for seasonal time
series where the autocorrelation occurs at lag 4, 1i.e.,

for time series values Sy and Si¢-gq. The differencing
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operator therefore yields white noise, i.e., the residuals
are normally distributed with zero mean and constant
variance (Jenkins, 1979). As mentioned earlier, the
objective of all time series analyses 1is to fit a model
such that the residuals yield white noise (Johnson and
Montgomery, 1976).

Due to the nature of how the forecasting methodology
was implemented, exponential smoothing models which account
for seasonality were ignored. Trend, however, is accounted
for through the use of Holt's exponential smoothing model.
(Linear regression may also be used bul was not employed in
this study.)

A strictly trending (linear) time series will take the

form

X¢ = m+ Bt + et

where Bt defines a 1linear trend (as a function of ¢t)
with slope B. Other trends are possible. However, our
discussion is 1limited to 1linear trends. Successfully
differencing a time series more than once for trend is a
good indication the trend is non-linear (Ibid.).

Let the trend at time t be given by Tt = St - S¢-1.
Since Sy is a random variable, Ty is also a random

variable. Therefore, using the same 1logic as simple
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exponential smoothing, we can smooth the trend by the

following:

Te = (1 -9g) Te-1 + g (Xt - X¢-1))

i.e., the smoothed trend is equal to a portion of the
previous smoothed trend plus a portion of the most recently
observed trend. The selection of g (or gamma) is made in
the same manner as alpha.

Using this estimate, we can modify S¢-; in the simple

exponential smoothing model to obtain

St = (1 - a) (Sg-1 t+ T¢-1) + a x¢

or more generally

Ft4i = S¢g + 1 T¢

where F¢4+; 1is the forecast for the ¢t+i'th period

(Barron and Targett, 1985)

Focus Forecasting

Flores and Whybark (1986) studied two forecasting
systems, "one recommended by practitioners for wuse in

inventory management, and the other the result of an
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international forecasting competition among academics."
These are the methods of focus forecasting and forecast
averaging, respectively.

Although this topic was touched upon briefly in the
literature review, we would 1like to say a little more
regarding the aforementioned study and our proposed
extension.

The forecast procedures used in the comparison were
very simplistic, e.g., "the forecast for the next month is
the actual demand for the same month last year.... [or]
...is one-sixth of the total actual demand for the last six
months (a two~quarter moving average)." Another, slightly
convoluted approach was "if the demand in the last six
months is more than 2.4 times the demand for the six months
preceding that, the forecast for the next month is
one-third of the demand for the same three month period
last year (i.e., we are starting into the downside of a
seasorzl swing)."

The focus and averaging techniques were then compared
to each other and, most importantly, to exponential
smoothing, i.e., exponential smoothing provided the
"baseline" for comparison.

Although averaging performed better than focus
forecasting on the simulated data (there was no statistical
difference for the empirical data), neither procedure

performed better than exponential smoothing. In fact,
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exponential smoothing was significantly better than either
of the other two procedures.

Exponential smoothing would then seem to be the obvious
choice. The next question, however, 1is the selection of
alpha and gamma, i.e., the forecast parameters. Past
studies have "fit" the parameters over the entire demand
history of each empirical data set (when empirical data
were used). Industry, of course, doesn't have this type of
clairvoyance; they would have to take an educated guess
given a limited demand history and monitor the forecast
model to make appropriate changes when necessary. But,
since this study was "automated", we did not have this
"luxury" either.

It therefore makes sense to either (1) average the
exponential smoothing forecasts from varying parameter
levels or (2) use the focus forecasting approach. We
selected the focus forecasting approach as it seems to be
the most appealing (intuitively). The idea 1is to keep
track of the mean absolute deviation and bias of a set of
exponentially smoothed forecasts and select the one best
forecast for the next planning horizon.

Silver and Peterson (1985), however, argue that
changing the smoothing constants (what they refer to as
"adaptive" smoothing), while having considerable intuitive

appeal, is "not necessarily better than regular,
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non-adaptive smoothing." (See Ekern, 1981; Flowers, 1980;
and Gardner and Dannenbring (1980)) Specifically, they
feel the resulting forecasts would be excessively
"nervous".

Fortunately, the lot sizing problem only requires use
of an extended forecast about every "TBO" periods. For our
purposes, the focus, or adaptive, approach should be quite
reasonable. In fact, comparisons of the mean absolute
deviation (MAD) for the adaptive procedure to the MADs of
each individual, static procedure (tested during program
development) were quite favorable and tend to support this
position.

Separate research regarding the relative merit of focus
or "adaptive" and averaged exponential smoothing techniques

(as used in automatic forecasting) is probably warranted.




CHAPTER V

THE EXPERIMENT

This chapter ccnstitutes the bulk of this research and
is divided as follows: Sample Data, Assumptions,
Performance Criteria, Computer Model, Experimental Design,
Results, and Analysis. Concluding remarks are contained in

Chapter VI.

Sample Data

Data was obtained from two separate industrial sources.
The first group originally contained 500 data sets
consisting of 52 weekly periods, however only 207 of these
proved suitable for our purposes. Specifically, all data
sets which contained an alphanumeric or zeroes were
discarded. The second group was very limited at 5 data
sets, however each data set consisted of 78 (monthly)
periods.

From the first group of 207, 36 were selected randomly
for the study. They were then classified according to the
coefficient of variation and data type.

The variability of each data set was determined to be

40




41

either low (0 < s/m < 0.5), medium (0.5 < s/m < 1.0), or
high (s/m > 1.0), where s (or sigma) is the standard
deviation. Selection of the "cut-offs" were arbitrary.

Data type consisted of two classifications: 1linear and
non-linear. The reason for this was two-fold. First, a
relatively small number of data sets were selected for the
study. Second, the forecast model used simple exponential
smoothing as well as Holt's exponential smoothing model for
a linear trend, i.e., it wasn't "designed" to handle a
non-linear demand pattern. It was therefore necessary to
account for the possibility the forecast model would
perform worse for the non-linear case.

An ARIMA ‘"identify" was performed on each data set
using the Statistical Analysis System (SAS) ((c) 1985 by
SAS Institute Inc.) in order to determine which demand
patterns could not be considered level, i.e., as white
noise. A second "identify" using a differencing of 1
determined which demand patterns could be considered
non-linear.

A complete listing of the 36 demand patterns in the
first group is given in Appendix A, however we will discuss
a few selected patterns here.

Figure 1 shows a plot of the first data set. Although
the demand series is generally 1linear with a relatively
small variance, large outliers occurring at periods 14 and

16 "inflate" the coefficient of variation to 1.49. Outliers
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such as these posed somewhat of a problem for the automatic
forecast model; a procedure discounting such outliers was
developed and will be discussed at a later point in this
chapter.

The demand series depicted in Figure 2 also constitutes
white noise, however "spikes" occur at periods 2, 16, 32,
33, and 46. If one considers periods 32 and 33 to be
"split", then the spikes occur about 1 every 15 cycles.
Like the previous demand series, these spikes inflate the
coefficient of variation to about 1.68.

Figure 3 on the other hand shows no significant spiking
when compared to the general variability of the data set.
This demand pattern qualified as white noise and showed a
moderate coefficient of variation of about 0.49.

A demand series showing a slight downward trend (after
an initial upswing) and moderate variance (coefficient of
variation of approximately 0.33) is shown in Figure 4.
Figure S5 shows a demand series witb a definite drop in
demand in period 8 followed by an upward trend. Coefficient
of variation for this series is slightly higher as a result
(about 0.53). Both series are considered 1linear (non-
constant).

Non-linear demand sets are given in Figures 6 and 7.
Figure 6 shows a rough "concave" pattern which is somewhat
obscured in spite of the relatively low coefficient of

variation (0.35). The non-linear pattern of Figure 7, on
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the other hand, 1is clearly convex and could very well be
seasonal (although we can't be sure due to the limited
history). The coefficient of variation for this set is a
slightly higher 0.46.

Table 2 shows the exact break-out of the 36 demand sets

in this group.

—— — ————— — —— —— ———— —— ———————— ———— ——————

I Structure |

Coef of Var I-——EEE;;;---|—;;;:£;;;;;-|

| Low 12 | s |
| Medim | 6 | 5 |
| men | s | o |

Table 2. Data Classification -- Group 1

The data in the second group is given in Appendix B.

Due to the limited number of data sets in this group, they

were not classified by data type or degree of variation. It
should be noted, however, that significantly more variation
in structure can exist for these longer demand sets as they

span a period of over 5 years.

Assumptions

Assumptions used to develop the single-stage,
production 1lot size problem are similar to those employed

by other research and are as follows:
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Demand is probabilistic and is forecast using a

limited amount of prior history.

A fixed cost is incurred for each setup.

The inventory holding cost is a function of the
amount of inventory on hand at the end of a given

period.

Production lead time is zero (i.e., we have enough

inventory at the end of a production period to

meet that period's demand).

All demands are met at the end of each period.

There is no safety stock except that inherent in

a particular lot size heuristic.

Back orders are allowed.

There is no monetary penalty for shortages in the

cost calculations (i.e., shortages are handled as

a separate criteria).

Demand for the next period is not known with

certainty.
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10. An updated forecast is

available for any period.

Performance Criteria

There are three types

variables) of interest in

of criteria (dependent

this study. These are cost,

number of stockouts, and the amount short per stockout.

Relative Cost

Previous studies have used
when used as a heuristic
comparisons. Unfortunately,
is suboptimal in the case
probabilistic demand.

Arguments for the use of

as the baseline are:

the Wagner-Whitten procedure
as the baseline for cost
the Wagner-Whitten procedure

of a rolling horizon and

the Wagner-Whitten heuristic

1. Wagner-Whitten is the baseline used for the

deterministic case.

2. 1It's not known before hand which rule will

outperform the others.

3. Use of the Wagner-Whitten "heuristic" will make

the study more easily comparable to previous

works.
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We feel these reasons do not justify the use of one
heuristic as a basis of comparison. 1It's true that we do
not know what the optimal cost of a probabilistic lot size
problem will be until the demands have already been
satisfied, i.e., we don't know what our future demands will
be. However, by comparing the cost obtained through the
use of a heuristic (when demand is considered stochastic)
with the optimal cost obtained by Wagner-wWhitten over the
entire demand "history" (when considered deterministic), we
obtain a true, fixed reference for comparison.

The key is the interpretation of the cost comparison.
Specifically, this difference in cost may be thought of as
the maximum amount of money we would be willing to pay for
perfect knowledge of our future demand (referred to as the
expected value of perfect information or EVPI). (See

Raiffa, 1968.)

Number of Stockouts

Wemmerlov and Whybark (1984), Tsado (1985a), and others
arbitrarily set service levels in order to handle the
question of stockouts. By service 1level, we mean that
there exists enough safety stock to assure demands are met
at least percent of the time. Generally, levels
between 90 and 99.999 percent have been chosen. As a
result, the stockout question is largely ignored.

Since we assume that stockouts have a "variable" cost,

i.e., the cost of a stockout to one organization may be
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quite 1less than that perceived by another, setting an
arbitrary service level may not be appropriate. Further,
by pre-determining a service level, the effects of a lot
size algorithm on inventory (holding and setup) costs and
stockout costs may be confounded.

In a manner similar to that employed by Bookbinder and
H'ng (1986), we chose to "count" the number of times a lot
size heuristic produced a stockout. Obviously, this number
will vary according to the TBO level, therefore we chose to
compute the stockout "cost" as the number of times a
stockout occurred expressed as a percentage of the number
of replenishments made.

For example, given a 52 period demand "history" with a
TBO 1level of 2, then 5 stockouts out of 26 replenishments
(approximately) will yield a stockout "cost” of 0.1923,
i.e., about 19.23% of the replenishments made experienced a
stockout. For a TBO of 6, 5 stockouts would imply a "cost"

of 57.69%.

Percent Short per Stockout
Another factor in the stockout question is the amount
of shortage when a stockout occurs. The average number
short per stockout 1is therefore an important "cost"
consideration, however, an average shortage of N units
doesn't tell us much.
There are two ways of handling this problem. One is to

express the shortage as a percentage of average demand,
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another is to express it as a percentage of the demand for
the period in which we were short. We chose the later.

Justification for our selection is as follows. Consider
an average demand of 500 units. If we were to have
forecast ‘a demand of 550 units where actual demand was 600
units, then our percentage short is only 8.3% of the actual
demand. If we had used average demand, we would have shown
a shortage of 10%. Now assume an average demand of 50
units. Similarly, assume a forecasted demand of 100 units
and an actual demand of 150 units. But now we show a
shortage of 33.3% of actual demand and a misleading 100% of
average demand.

In both cases the forecast was 50 units greater than
average demand, and actual demand was 50 units greater than
forecasted demand. Obviously, shortage "cost" expressed as
a percentage of actual demand 1is a more accurate estimate

of the true "cost" associated with a shortage.

Computer Model

Although not a simulation study, a computer model was
used to generate forecasts, compute production policies via
the various 1lot size heuristics (including the optimal
Wagner-Whitten cost), and to compute the costs associated
with each policy. This section discusses the issues of

program development and validation.
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Program Development

Both the forecasting procedure and lot size procedure
were automated via a program written in MICROSOFT
QuickBASIC (R) and run on an IBM XT (R) compatible
microcomputer. The program listing is given in Appendix C.

For purposes of clarity, this section 1is further
subdivided into 2 groups. The first discusses the forecast
algorithm; the second addresses the lot size procedure.

The Forecast Procedure. The complete forecast is

generated over the entire demand history of each data set
(on a rolling horizon basis) prior to implementation of the
lot size procedure. Estimates of level demand and trend
(when Holt's exponential smoothing model 1is wused) are
stored in memory. Although the forecast for each period is
used in the lot size procedure, extended forecasts are only
developed when required by the particular 1lot size
heuristic employed.

To provide a compact computer algorithm, the simple
exponential smoothing procedure was incorporated into
Holt's procedure by setting the trend parameter, g, to
zero.

Focusing 1is carried out by keeping track of each
individual or single forecast's mean absolute deviation and
smoothed error tracking signal (bias). (Estimates of the
MAD are also exponentially smoothed.) The forecast with

the best current MAD is selected for the focused model if
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the bias is within acceptable limits, specifically between
-0.8 and 0.3.

Silver and Peterson (1985) argue that a negatively
biased forecast, i.e., where forecast exceeds demand, is
preferable to a positively biased forecast, i.e., where
demand exceeds the forecast, since being a few items
overstock is preferable to consistently being short
(causing too many premature setups).

Wemmerlov and Whybark (1984) specifically avoid the use
of biased forecasts by adjusting the average actual demand
per period to equal the average forecast demand per period.
While easily done for simulated demand data, it's generally
not appropriate for empirical demand forecast on a rolling
horizon basis.

Research by Lee, Adam, and Ebert (1987) show that "bias
is the only measure that satisfactorily reflects inventory
carrying cost... [and] only bias displays any reasonable
association with the shortage cost and shortage units...."

Since carrying cost is caused by over forecasting (what
they refer to a positive bias) and shortage costs are
caused by under forecasting (referred to as negative bias),
the use of an unbiased forecast (as used by Wemmerlov and
Whybark (1984)) might seem reasonable. The research by

Lee, et al. (1987), however, shows that "the structures of
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these two component costs may not be symmetrical about the
zero bias level." Unfortunately, they do not provide
guidelines as to what the nominal bias levels may be.

The specific bias levels used in the forecast model
were determined in conjunction with an outlier discounting
criterion. An example data set which exhibited a steep
downward trend due to large upward spikes (outliers) was
used. The steep downward trend was "leveled" somewhat by
discounting the outliers (more on this in a moment) and
then varying the bias criteria in an effort to eliminate a
large series of 2zero forecasts caused by the initial
"trend". (The data set used is shown in Figure 1.)

Outliers were discounted by keeping track of the
average demand and standard deviation of the series at each
point in the forecast "cycle". 1If an outlier exceeded 4
standard deviations, the actual demand was reduced to the
mean plus 4 standard deviations for forecast purposes. This
provided a stabilizing influence on the forecast which
otherwise would have to have been provided by human
intervention. On the downside, the forecast model would
lag slightly behind a true shift in the mean of the demand
series. (This type of lag is a standard "penalty" for
exponentially smoothed forecast procedures.)

The Lot Size Procedure. Other than the Wagner-Whitten

algorithm, the other heuristics are simple to use and will

not be discussed here (please refer to Appendix C for more
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information). Our discussion will be limited to that part
of the procedure which determines our production policy.

Research on lot size procedures has been performed by
Silver (1978), Askin (1981), Bookbinder and Tan (1983), and
Bookbinder and H'ng (1986). Our procedure, while developed
prior to our knowledge of the previous works, is similar to
that suggested by Bookbinder and Tan.

Our procedure is as follows:

1. Use a focus forecast from simple exponential
smoothing and exponential smoothing with trend

models for demands over the rolling horizon.

2. Treat the forecast demands as deterministic and

employ a specific lot size heuristic.

3. If on-hand inventory is positive, the amount
produced will be the amount obtained from the

lot size heuristic minus the on-hand inventory.

4. If on-hand inventory is negative, i.e., a stockout
has occurred, the amount produced will be the
amount obtained from the lot size heuristic plus

the amount backordered.

5. Each period, the on-hand inventory is compared to
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the forecast for the next period. If our forecast
exceeds our inventory position, we schedule a

setup for the next period, otherwise we continue.

6. When the next period's demand is realized, we
either meet demand or we're short. If a shortage
occurs, a setup is scheduled for the next period,
otherwise we look at next period's forecast

(Step 5).

7. We develop an extended forecast only when a setup

is scheduled.

8. Continue this procedure until we exhaust all

available demand data.

9. Discount the inventory holding cost for all on-
hand inventory used to satisfy demand beyond the

last period in the data set.

Figure 8 provides a flowchart depicting the logic of

the lot size procedure employed.

Program Validation
Verification of the computer model was obtained through
hand calculations and analysis of the results. (Discussed

in a separate section.)
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The optimal Wagner-Whitten procedure and all lot size
heuristics were validated by hand using a data set from the
first group. The forecast model used for hand verification
of the heuristics was simple exponential smoothing with an
alpha parameter of 0.2. The code used for the
Wagner-Whitten procedures was an equivalent branch and
bound algorithm published by Jacobs and Khumawala (1987).
Verification of the code was accomplished by comparing the
results with solutions obtained using the Wagner-Whitten
algorithm by hand.

The forecast procedure was also validated by hand,
however, the overall focus forecasting policy was not.
Instead, we validated the model during program development
by comparing the focus MAD with each individual MAD for
several data sets. The focus forecast compared very
favorably, 1i.e., while not the best, it was significantly
better than most.

Verification of the general lot size procedure was also
obtained by hand. Specifically, the heuristics were run
using the example forecast and the results for each
transaction printed out for verification. The policy was

then computed by hand and compared with the printout.

EXPERIMENTAL DESIGN

The experimental designs for each group of data was
different due to the limited number of data sets available

in the second group.
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The first group uses an unbalanced 5 factor design with
5 performance criteria (3 of which are the costs outlined
previously; the other 2 are measurements involving the mean
absolute deviation of the forecast series). The design is
unbalanced since 3 of the 5 factors, data set, data type,
and degree of variation, are attributes associated with the
data set. (By data set, we mean the specific data set of
which there are 36. Data type and degree of variation are
as defined earlier in our discussion of the sample data and
are nestecd within data set.) The other two factors are, of
course, the lot size algorithm and TBO.

The TBO factor was set at 5 levels: 2, 4, 6, 8, and 10.
To do this, we set the TBO level a-priori and determined
the appropriate A/h ratio based upon the mean or average
demand of each data set. Our procedure is therefore
similar to the studies performed by Berry (1972), Callarman
and Hamrin (1979), Wemmerlov and Whybark (1984), and
others.

All interactions are considered except the 5-way
interaction (as it's equivalent to the error term). The
second group was handled slightly differently in that only
the primary factors, 1lot size algorithm and TBO, are used
in the ANOVA, 1i.e., we employ a simple 3-factor balanced

design with interaction.
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RESULTS
The results for both data groups are very similar,
however the 3 factor design for the second group wasn't
able to discriminate as well as the 5 factor unbalanced

design of the first. The ANOVA results are presented in
Table 3.

| Significance I
Variable = -=-——------s- —ccmo—meme—ee
| Group 1 [  Group 2 |
Cost 0.001 0.001
Short 0.001 0.001
% Short 0.001 0.006

Table 3. Basic ANOVA

As you can see, both ANOVAs are significant. Tables 4
and 5 provide a "breakdown" of the significance for each
factor combination for Groups 1 and 2, respectively. The
asterisk denotes significance at the 0.01 level.

The 3- and 4-way interactions are generally significant
for cost although not for shortages or amounts short in the
Group 1 ANOVA. Results are similar for the 2-way
interactions in Group 2. The results for all common

factors and their interactions are generally the same for
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both groups, e.g., the LOT(size) factor is significant

whereas the TYPE factor 1is not. (Note: This is not

necessarily true for all dependent variables or "costs".)

| Significance |
Factor =~ = =  ==-——mm-mm mmmmee—ee e e
| cCcost | Short | s$Short |
“ror | o0.0001* | 0.0001* | o0.0001%
TBO 0.0001* 0.0001* 0.0006"
TYPE 0.9926 0.3008 0.0001*
VAR 0.0001* | o0.0001* 0.0001*
SET (VARXTYPE) 0.0001" 0.0001% 0.0001"
LOTxTBO 0.0001* 0.0001* 0.0001*
LOTxTYPE 0.5518 0.4180 0.6018
LOTxVAR 0.0030" 0.0489 0.1056
LOTxSET (VARXTYPE) 0.0001* | o0.0001% 0.0009"
TBOXTYPE 0.4834 0.3676 0.3004
TBOXVAR 0.0001* | o0.o001* 0.0037%
TBOxSET (VARXTYPE) 0.0001* 0.0036" 0.0001*
VARXTYPE 0.0126 0.0010* 1.0000
LOTxTBOXTYPE 0.0693 0.8679 0.5761
LOTxTBOXVAR 0.0001* 0.2513 0.5739
LOTxTYPEXVAR 0.0001" 0.2142 0.7851
TBOXTYPEXVAR 0.0001" 0.0734 0.0005"
LOTxTBOXxTYPEXVAR 0.0001* | 0.6336 0.4499
Table 4. Detailed ANOVA (Group 1)




| Significance |
Factor  -=-—=-=mv—= - e ———mes ——————————
| cost | Short | %Short |
“ror | o.0001* | o0.0001% | 0.0047%
TBO 0.0001* | 0.0001* | o0.0180
SET 0.0124 0.3534 0.0023%
LOTXTBO 0.0001* | o0.0004" 0.4349
LOTxSET 0.0001* | 0.1247 0.0146
TBOXSET 0.0011* 0.2736 0.0067"

Table 5. Detailed ANOVA (Group 2)

Tables 6 and 7 give the results of the Tukey multiple
range tests for each single factor of interest.
Means with the same letters are not significantly

different and are listed from high to low. Note that the

—— —— ——— S . S —— — AP — ——— f— - —— - —— v ————— —

| Pactor | cCost | sShort | %Short |
Lotsize 51324 4 2315 4 2315
A B CCCCC | AAA C ARAA CCC D
BBB D BBB
TBO X826 4 X 86 42 X 42638
A BBB CCC A BBBBB C AAA
BBBBBBB
Type Lin Non Lin Non Lin Non
AAAAAAA AAAAAAA A B
Var 3 2 1 3 2 1 3 2 1
A B C A B C A B C

—— ———— —— - —— — ——— Y - —— - —— - R GF c— —— — T — ————— - -

Table 6. Single Factor Tukey Results (Group 1)
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| Pactor | cCost | short | tShort |
Lotsize 514 3 2 23415 4 2315
A BBBBBBB AAAAAAA AARAAAAAAA
BBB

TBO X826 4 X 86 42 X 86 24
A BBBBBBB AAAAAAA AAARA CCC

BBB BBB

—— . —— ——— —— — — ————— —— — ———— — — A ———— T ——— ———— =

Table 7. Single Factor Tukey Results (Group 2)

lotsize heuristics are classified as before, i.e., 1=
Eisenhut, 2 = EOQ, 3 = Silver-Meal, 4 = Tsado's method, and
5 = Wagner-Whitten (non-optimal). The X denotes a TBO of
10, "Lin" is short for linear, and non-linear is
abbreviated as "Non".

There are 8 2-factor interactions of interest which are
significant in the Group 1 ANOVA: LOTxTBO and TBOxVAR for
cost, number of shortages, and amounts short, LOTxVAR for
cost, and VARXTYPE for shortages. Figures 9 through 16
depict these interactions. Figures 17 and 18 provide the
r:sults of 2 significant 2-factor interactions, LOTxTBO for
both cost and number of shortages from the Group 2 ANOVA.

All interactions involving the (data)SET factor are
omitted as differences in cost due to the demand series is
expected.

The reader 1is referred to Appendices D and E for

additional information.
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2-Factor Interaction (Group 1)
Lotsize x TBO

Avg Inventory Costs (Holding & Setup)
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2-Factor Interaction (Group 1)
Lotsize x TBO

Avg # of Stockouts (% of Replenishments)
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2-Factor Interaction (Group 1)
Lotsize x TBO

Avg Amount Short (% of Actual Demand)
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2-Factor Interaction (Group 1)

Lotsize x Variance

Avg Inventory Costs (Hoiding & Setup)
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2-Factor Interaction (Group 1)
TBO x Variance

Avg Inventory Costs (Hoiding & Selup)
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2-Factor Interaction (Group 1)
TBO x Variance

Avg Inventory Costs (Holding & Setup)
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2-Factor interaction (Group 1)
TBO x Varlance

Avg # of Stockouts (% of Replenishments)
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2-Factor Interaction (Group 1)

TBO x Variance

Avg Amount Short (% of Actual Demand)
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2-Factor Interaction (Group 1)
Variance x Type

Avg # of Stockouts (% of Repienishments)
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2-Factor Interaction (Group 2)
Lotsize x TBO

Avg Inventory Costs (Holding & Setup)
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2-Factor Interaction (Group 2)
Lotaize x TBO

o Avg # of Stockouts (% of Replenishments)
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ANALYSIS

It's obvious from Tables 6 and 7 that different lotsize
algorithms perform differently for standard inventory
(holding and setup) costs than for shortage related
"costs".

In this study, we've shown that the EOQ, Silver-Meal,
and Tsado algorithms perform significantly better for
inventory costs than do the Eisenhut or Wagner-wWhitten
heuristics. Further, the inventory costs for the LOTXTBO
interaction depicted in Figure 9 are relatively stable for
these "near-optimal" performers.

Tsado's algorithm performed best for cost (and worse
for shortages) in the Group 1 ANOVA, although the
differences were not significant between the 3 best. The
Group 2 ANOVA placed Tsado's heuristic in third, but again,
the differences among the best performers were not
significant.

Conversely, the Eisenhut and Wagner-Whitten heuristics
perform significantly fewer shortages and less items short
per stockout (expressed as a percentage of actual demand
for the stockout period). Figures 10 and 11 show the
relatively wide range of performance for the various
heuristics.

Eisenhut tends to be the most stable for TBO with
shortages occurring between 12 and 18 percent of the

replenishments made. Wagner-Whitten, while slightly less
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stable, is the overall best performer. 1It's interesting to
note that performance of the W-W heuristic as a "function
of" TBO is essentially inverted. Figure 11 shows a much
greater degree of interaction between all five heuristics
for amounts short.

Note that a TBO of 10 provides the W-W solution with
virtually no stockouts and less than 10 percent of actual
demand short when a stockout does occur. The price,
however, is an average cost over 3 times as great as the
true optimal solution. 1In all cases, the Wagner-Whitten
algoritnm performed worse for cost and best for shortages,
although significance was not shown for amounts short in
the Group 2 ANOVA (see Table 7).

It therefore appears the Wagner-Whitten and Eisenhut
algorithms maintain a significant amount of inherent safety
stock whereas the others tend to "run lean". Additional
inventory woulZ drive up the inventory holding costs while
reducing the number of stockouts due to being a few items
short.

Table 6 shows the type of data set, 1i.e., whether it's
linear or non-linear, does not affect either cost or the
number of shortages significantly. Non-linearity does seem
to affect the amount short per stockout. It appears that
non-linear demand has a smaller percentage short per
stockout due to "over-forecasting" by our linear forecast

model. The degree of variance, however, 1is significant
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for all dependent variables with 1lower overall costs
associated with lower variability (as would be expected).

Although the significance level was set at 0.0l1, Figure
13 (TBOxVAR - Cost) shows interaction between TBO levels of
2 and 4. Although lower variance generally implies lower
overall costs (i.e., both inventory and shortage
related), the reverse is true for the TBO factor at a level
of 2, We would 1like to point out that actual cost
performance at this level may not be that "significant"”
(41.3, 41.7, and 39.0 for low, medium, and high variances,
respectively).

Cost performance as a function of TBO tends to validate
the "rule of thumb" advocated by Wemmerlov and Whybark
(1984) which states the 1length of the rolling horizon
should be approximately 3 times the average time between
orders. A TBO of 4 was best wusing our rolling horizon of
12 periods. Performance for number of stockouts and
amounts short per stockout, however, do not support this
assertion.

We should note at this point that Wemmerlov and Whybark
(1984) also advocate a rolling horizon of at least 5 times
the average time between orders for the Wagner-Whitten
algorithm when used as a heuristic. The argument in this
case was the fact the W-W heuristic utilized the entire
length of the rolling horizon in order to make its initial

production decision. From Appendix D, we see that the mean
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cost performance for the W-W heuristic for a TBO of 2 is
41.015926 and for a TBO of 4 is 32.546886. This tends to
discredit their assertion.

There may be 2 reasons for this. PFirst, previous cost
criteria "consisted" of standard inventory costs and an
"artificial" se;vice level. The mean "cost" performance
for stockouts is better for the Wagner-Whitten heuristic
with a TBO of 2 than a TBO of 4 (9.1463710 and 14.3588956,
respectively), therefore the "total costs" due to inventory
and stockouts may "average" out. (Note there was no real
difference in the amounts short for either case.) Second,
forecasts generally tend to "worsen" as they extend further
into the future. This would tend to imply that using
increasingly "bad" data in order to make the initial
production decision results in a "worse" decision.

The cost results for the TBO factor (where a TBO which
is one-third of our rolling horizon is "optimal") tend to
validate the production procedure and the computer code in
general.

Other results which tend to validate this research are

as follows:

1. The difference between all heuristic costs and

the optimal cost are strictly positive.

2. The average difference between the mean absolute
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deviation of the lotsize forecasts and the
focused forecast for each data set is strictly

positive.

3. The amount of lotsize forecast error decreases

with TBO.

4. Lotsize forecast error is greater for non-linear

than for linear data sets.

5. Lotsize forecast error is generally greater for

data sets with a higher degree of variance.

And finally, we would 1like to note that the Group 2
design did not discriminate as well as the Group 1 design.
This is probably due to 2 factors. First, the number of
datasets, and therefore observations, is smaller in Group 2
than Group 1. Second, the design for Group 1 is more
"complex", i.e., it accounts for more error than the
simpler Group 2 model. 1It's interesting to note, however,
that Figures 17 and 18 show essentially the same thing as
Figures 9 and 10, 1i.e., both data groups (Groups I and II)
show a), roximately the same average performance, both
absolute (numerically) and relative (to each other), for

all lotsize algorithms at all factor levels.




CHAPTER VI

CONCLUDING REMARKS

The purpose of this research was three-fold. First,
there existed a need to perform a study of 1lotsize
heuristic performance which forecasts empirical demand data
in the same manner in which the lotsize heuristics are
implemented, i.e., over a rolling horizon. Second, we
wished to analyze shortage costs separately from
traditional inventory costs. And finally, we wished to
validate the heuristic presented by Tsado (1985).

The 1lack of significance for the LOTxXVAR interaction
validates the assertion of previous studies that, although
higher variance increases costs, it doesn't alter the
relative performance of the lot size heuristics.

We have shown, however, that results from previous
studies were confounded due to the way shortage costs were
handled, i.e., by setting an arbitrary service level.
Whereas previous studies showed no significant difference

in lot size heuristic performance, we have shown that some
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lot size heuristics perform better for traditional
inventory costs and others perform better with regard to
the average number of stockouts expressed as a percentage
of the total number of replenishments made and average
amounts short as a percentage of actual demand for the
stockout period.

Whether this result has any application to the way
lotsize heuristics are chosen and implemented or not is for
industry to decide. (Specifically, a company will probably
set a service 1level based upon its own perception
of the "cost" associated with a shortage.) However, we
believe this result is important in that it shows that
researchers should carefully choose their basic
assumptions. In this case, previous researchers would have
obtained results similar to this research if they had set
service 1level as a factor in their experimental designs.
But by setting a single service level, they "confounded"
the relative performance of the various lot size heuristics
examined.

And finally, we've shown that Tsado's algorithm
performed very well for traditional inventory holding and
setup costs and have therefore validated his 1985 study.

This study was by no means all-encompassing. The

following are suggestions for further research:
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A similar study is required using a balanced
experimental design similar to that used by
Group 1 and using a more complete array of

lotsize techniques.

Separate research regarding the relative merit
of focus or "adaptive" and averaged exponential
smoothing techniques (as used in automatic

forecasting over a rolling horizon) is warranted.
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APPENDIX C

PROGRAM LISTING

DECLARE SUB eoq ()
DECLARE SUB tsado ()
DECLARE SUB wwheuristic ()
DECLARE SUB eoqgtimesupply ()
DECLARE SUB eisenhut ()
DECLARE SUB silvermeal ()
DECLARE SUB wagnerwhitten ()
DECLARE SUB forecaster ()
COMMON SHARED /Adata/ cost, count, datatype, holding,
horizon, inventory, k9
COMMON SHARED /Bdata/ lastn, mad, n, production, setup,
sigma, xbar
DEFSNG A-2Z
x = 10 'Dummy variable to allow dynamic dimensioning of
demand(n) and forecast(n)
DIM SHARED D(x), demand(x), forecast(x, x), lotdata(x)
DIM SHARED R(x), a(x, x), O(x)
'Iterate through all 'DATA sets
FOR dataset = 1 TO S
READ xbar, sigma, datatype, n
horizon = 12 '12 weeks (3 months) for weekly DATA or 12
months for yearly data
ERASE demand, forecast, D, lotdata
REDIM SHARED D(horizon), demand(n), forecast(n + 1, 2),
lotdata(n + horizon)
FOR i = 1 TO n: READ demand(i): NEXT i
IF n = 52 THEN lastn = 6 ELSE lastn = 12
'Compute variation as Low (1), Medium (2), or High (3)
IF sigma / xbar <= .5 THEN
variation = 1
ELSE
IF sigma / xbar > 1! THEN
variation = 3
ELSE
variation = 2
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END IF
END IF
'Generate optimal forecast
CALL forecaster
'Begin iterations through all values of TBO
FOR TBO = 2 TO 10 STEP 2
setup = INT(.5 + .5 * xbar * TBO 2): holding =1
IF n = 52 THEN lastn = 6 ELSE lastn = 12
start = lastn
'Get optimal solution
CALL wagnerwhitten
'Begin iterations through all lotsize algorithms
FOR lotsize = 1 TO S

~

IF n = 52 THEN lastn = 6 ELSE lastn = 12
'Start basic algorithm
lastn = lastn + 1l: short = 0: count = 0

58 IF lastn > n THEN 2101

FOR i = 1 TO horizon

D(i) = forecast(lastn, 1) + (i - 1) * forecast(lastn, 2)
IF D(i) < 0 THEN D(i) = 0

lotdata(lastn + i - 1) = D(1i)

NEXT i

D(1) = D(1l) + short

'Select appropriate lotsize technique

ON lotsize GOTO 665, 666, 667, 668, 669

665 CALL eisenhut

GOTO 701

666 CALL eoq

GOTO 701

667 CALL silvermeal

GOTO 701

668 CALL tsado

GOTO 701

669 CALL wwheuristic

'Compute inventory level and cost after production
701 inventory = inventory + production

cost = cost + setup: count = count + 1

'Compute inventory and holding costs after demand for
'‘current period is satisfied

61 IF lastn > n GOTO 2101

inventory = inventory - demand(lastn) - short

cost = cost + inventory * holding

IF lastn >= n GOTO 2101

lastn = lastn + 1

'Determine if forecast demand exceeds inventory

IF inventory > lotdata(lastn) THEN '‘Inventory exceeds
forecast
IF demand(lastn) > inventory THEN 'Demand too large
-- shortage

short = demand(lastn) - inventory
inventory = 0
percentshort = percentshort + short / demand(lastn)
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shortcounter = shortcounter + 1
lastn = lastn + 1
GOTO 58 'Setup a new production run
ELSE 'Demand was less than our inventory -- deliver
current demand
short = 0
GOTO 61 'Deliver next period's demand
END IF
ELSE 'Next period's forecast for demand exceeds current
inventory
short = 0
GOTO 58 'Setup a new production run
END IF
'‘Calculate the true mean absolute deviation for all periods
‘included in the lotsize problem
2101 FOR 1 = start + 1 TO n
lotsizeforecasterror = lotsizeforecasterror +
ABS(lotdata(l) - demand(l))
lotsizetrackingsignal = lotsizetrackingsignal + demand(l) -
lotdata(l)
NEXT 1
lotsizeforecasterror = lotsizeforecasterror / (n - start)
lotsizetrackingsignal = lotsizetrackingsignal /
(lotsizeforecasterror * (n - start))
'Subtract holding costs for periods beyond N from the total
'cost -- this will reduce the variability between TBOs
'{treatments).
cost = cost - inventory * holding
'Compute PERCENTSHORT if SHORTCOUNTER is nonzero (to
'prevent division by 0).
IF shortcounter > 0 THEN percentshort = percentshort /
shortcounter * 100
'Change SHORTCOUNTER into the fraction of times short to
'number of replenishments made (COUNT = (approx.) TBO --
'this will reduce the variability due to TBO (e.g. a model
'with a TBO of 2 can havequite a few more shortages in a
'given time period than a model with a TBO of 10).
shortcounter = 100 * shortcounter / count
'Output results to 'DATA file in current directory.
JOPEN "THESIS2.0UT" FOR APPEND AS #1
WRITE #1, dataset, datatype, variation, sigma / xbar, TBO,
lotsize, 100 * (cost - k9) / k9, shortcounter,
percentshort, 100 * (lotsizeforecasterror - mad)
/ mad, 100 * lotsizeforecasterror / xbar, 100 *
lotsizetrackingsignal
CLOSE #1
'Note: The 'DATA is given in percentages to provide
'non-exponential format in the output (in order to allow
'SAS to read the DATA directly (after the commas are
'removed)).
'Zero appropriate variables.
inventory = 0: production = 0: lotsizeforecasterror = 0:
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lotsizetrackingsignal = 0

shortcounter = 0: percentshort = 0: cost
ERASE lotdata

REDIM lotdata(n + horizon)

NEXT lotsize

NEXT TBO

NEXT dataset

END

'DATA statements

]
o

SUB forecaster

'This subroutine computes a focused forecast using Holt's
'exponential smoothing model and simple exponential
'smoothing (special case of Holt's model where gamma = 0).
DIM holt(4, 5, 6), bestholt(6), stat(n)

'Copy the demand 'DATA to a new matrix for the algorithm
'which smoothes out outliers

FOR i = 1 TO n: stat(i) = demand(i): NEXT i

'Store the various levels of Alpha and Gamma in the
'forecast matrix called HOLT

FOR j = 1 TO 4: FOR k = 1 TO 5: holt(j, k, 1) = j * .1:
NEXT k: NEXT j
FOR k = 1 TO 5: FOR j = 1 TO 4: holt(j, k, 2) = (1 - k) *

.l: NEXT j: NEXT k

w = .05 'Smoothing constant for the exponential smoothing
form of MAD averagedemand = {(demand(l) +
demand(2)) / 2 'Initialize averge demand

'Compute the first forecast for all Alpha and Gamma levels

'as the average of the first two periods of demand.

FOR j = 1 TO 4

FOR k 1 TO 5

holt(j, k, 3) = averagedemand

holt(j, k, 5) = ABS(holt(j, k, 3) - demand(3)) 'Initialize

individual MADs

NEXT k

NEXT j

'Begin forecast procedure

FOR h = 3 TO n 'Iterate through N periods

'Compute current average and std deviation of the demand

‘'sequence for H-1 periods

averagedemand = 0: sum = 0

FOR ij =1 TO h - 1: sum = sum + stat(ij): NEXT ij

averagedemand sum / (h - 1)

sumsquare = 0

FOR ik = 1 TO h - 1: sumsquare = sumsquare + (stat(ik) -

averagedemand) ~ 2:

n o

NEXT ik

deviation = (sumsquare / (h - 2)) .5

bestholt(5) = 99999999994 ‘Set high initial value of MAD
FOR j = 1 TO 4 'Iterate through all 4 Alpha levels

FOR k =1 TO S 'Iterate through all 5 Gamma levels
residual = demand(h) - holt(j, k, 3) 'Store difference

~
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between last estimate
and actual demand
'Discount outliers (virtually all points should fall within
'3 or 4 std deviations if the points are distributed
'normally).
IF datatype = 1 THEN 'Only valid for constant and
slightly trending demand
IF deviation > 0 THEN
IF ABS(residual) / deviation > 4 THEN
residual = SGN(residual) * 4 * deviation
stat(h) = residual + averagedemand
ELSE
END IF
ELSE
END IF
ELSE
END IF
temp = holt(j, k, 3) 'Store last estimate (the one for
current period's
demand)
'Compute new estimate.
holt(j, k, 3) = (1 - holt(j, k, 1)) * (holt(j, k, 3) +
holt(j, k, 4)) + holt(j, k, 1) * stat(h)
IF holt(j, k, 3) < 0 THEN holt(j, k, 3) =0
'Compute new trend.
holt(j, k, 4) = (1 - holt(j, k, 2)) * holt(j, k, 4) +
holt(j, k, 2) * (holt(j, k, 3) - temp)
'Compute current MAD and current smoothed forecast error.
holt(j, k, 5) = (1 - w) * (holt(j, k, 5)) + w *
ABS(residual)
holt(j, k, 6) = (1 - w) * (holt(j, k, 6)) + w * residual
'‘Determine the best forecast to date.
trackingsignal = holt(j, k, 6) / holt(j, k, 5)
'As defined by Silver and Peterson (1985)
'Note: A negatively biased forecast (i.e.,, where forecast
'exceeds demand) is preferable to a positively biased
'forecast (i.e.,, where demand exceeds forecast) since
being
'a few items overstock ("safety stock") is preferable to
'consistently being a few items short (causing too many
'premature setups). ([See EOQ example, Ibid.)
IF trackingsignal < .3 AND trackingsignal > -.9 THEN
IF holt(j, k, 5) < bestholt(5) THEN
bestholt(1l) = holt(j, k, 1)
'‘Alpha of best forecast for the period
bestholt(2) = holt(j, k, 2)
'Gamma of best forecast for the period
bestholt(3) = holt(j, k, 3)
'Best smoothed estimate
bestholt(4) = holt(j, k, 4)
'Best smoothed trend
bestholt(5) = holt(j, k, 5)
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'Best MAD for the period
bestholt(6) = holt(j, k, 6)
'Best smoothed forecast error for the period

ELSE
END IF
ELSE
END IF
NEXT k 'Next Gamma
NEXT j 'Next Alpha

'Now store the best forecast for this period (which is the
'forecast for ‘'demand in period H+1, i.e., the next
period).

forecast(h + 1, 1)
forecast(h + 1, 2)

INT(.5 + bestholt(3))
INT(.5 + bestholt(4))

NEXT h 'Next period

'Compute the MAD for the entire forecast over N - Lastn
‘periods.

mad = 0

FOR i = lastn + 1 TO n: mad = mad + ABS(forecast(i, 1) -~
demand(i)): NEXT i

mad = mad / (n - lastn)

'Compute the tracking signal for the entire forecast over N
'- Lastn periods.

track = 0

FOR i = lastn + 1 TO n: track = track + demand(i) -
forecast(i, 1): NEXT i

trackingsignal = track / (mad * (n - lastn))

END SUB

SUB silvermeal
DIM trc(24), trcut(24)

trc(l) = 0: trcut(l) = 0: production = 0
trc(l) = setup: trcut(l) = trc(l)
FOR kk = 2 TO horizon

trec(kk) = tre(kk - 1) + (kk - 1) * D(kk) * holding
trcut(kk) = tre(kk) / kk

IF trcut(kk) > trcut(kk - 1) THEN 55

NEXT kk

55 FOR 1 = 1 TO kk - 1

production = production + D(1)

NEXT 1

production = production - inventory

END SUB

SUB eisenhut 'part-period balancing

DIM trc(24), trcut(24)

tre(l) = 0: production = 0

FOR kk = 2 TO horizon

trc(kk) = trc(kk - 1) + (kk = 1) * D(kk) * holding
'determine first period where accumulated holding costs
'exceeds setup

IF trc(kk) > setup THEN




116

‘determine which integer period is closer to actual setup
'costs
IF ABS(trc(kk) - setup) > ABS(trc(kk - 1) - setup)

THEN
lastperiod = kk - 1
ELSE
lastperiod = kk
END IF
GOTO 565

ELSE 'continue to next period, i.e., next kk
END IF

NEXT kk

565 FOR 1 = 1 TO lastperiod

production = production + D(1)

NEXT 1

production = production - inventory

END SUB

SUB eoq

production = 0: avg = 0
FOR i = 1 TO horizon
avg = avg + D(1i)

NEXT i
avg = avg / horizon
production = (2 * avg * setup / holding) ~ .5 + short

production = INT(.5 + production) - inventory
END SUB

SUB tsado

production = 0: avg = 0

FOR i = 1 TO horizon

avg = avg + D(1i)

NEXT i

avg = avg + short: avg = avg / horizon

time = lastn - 7

production = -~avg * time + ((avg * time) ~ 2 + (2 * avg *
(cost + setup) /

holding)) © .5

production = INT(.5 + production) - inventory
END SUB

SUB wagnerwhitten

S ERASE R, a, O

10 REDIM R(n), a(5000, S5), O(n)

60 m = n - lastn

110 FOR i = 1 TO m: R(i) = demand(i + 6): NEXT i
120 S = setup

130 € = holding

150 a(1, 1)
160 a(l, 2)
170 a(1, 3)
180 a(l, 4)

o nn

oW




190
200
210
220
230
240
250
260
270
280
290
300
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
720
730
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a(l, 5) =1

Nl =0

N2 =1

FOR i =1TOm

IF R(i) = 0 THEN 530
k9 = 999999999#

K8 =0

FOR k = 1 TO N2
IF a(Nl1 + k, 3) > k9 THEN 320

K8 = N1 + k
k9 = a(K8, 3)
K7 = k9 + S
NEXT k

N3 =1

j = N1 + N2

a(j + N3, 1) = i

a(j + N3, 2) =1
a(j + N3, 3) = K7
a(j + N3, 4) = K8

a(j + N3, 5) i
FOR k = 1 TO N2

Cl = (i - a(N1l + k, 5)) * C * R(i)
IF C1 > S THEN 500

IF a(N1l + k, 4) + C1 > K7 THEN 540
N3 = N3 + 1

a(j + N3, 1) i

a(j + N3, 2) =0
a(j + N3, 3) = a(N1 + k, 3) + Cl
a(j + N3, 4) = N1 + k

a(j + N3, 5) a(Nl + k, 5)

NEXT k

Nl = j

N2 = N3

NEXT i

k9 = 9999999994
K8 = 0

FOR k = 1 TO N2

IF a(Nl + k, 3) > k9 THEN 600
K8 = N1 + k

k9 = a(K8, 3)

NEXT k

'Solution Cost = k9

IF a(K8, 2) = 0 THEN 640
O(a(K8, 1)) 1

K8 = a(K8, 4)

IF a(K8, 4) = 0 THEN 670

GOTO 620

FOR i = 1 TO m

IF i = 1 THEN 720

IF O(i) = 0 THEN 730
Q=20

Q = Q + R(1i)
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740 NEXT i
END SUB

SUB wwheuristic
1105 ERASE R, a, O
1110 REDIM R(horizon), a(1000, 5), O(horizon)
1115 production = 0: flag = 0

1160 m = horizon

11110 FOR i = 1 TO m: R(i) = D(i): NEXT i
11120 S = setup

11130 C = holding

11150 a(l, 1)
11160 a(l1, 2)
11170 a(1, 3)
11180 a{l, 4)
11190 a(1, 5)
11200 N1 = 0
11210 N2 =1
11220 FOR i =1 TO m

11230 IF R(i) = 0 THEN 11530

11240 k999 = 9999999994

11250 K8 = 0

11260 FOR k = 1 TO N2

11270 IF a(Nl + k, 3) > k999 THEN 11320
11280 K8 = N1 + k

11290 k999 = a(K8, 3)

11300 K7 = k999 + S
11320 NEXT k

11330 N3 = 1

11340 j = N1 + N2
11350 a(j + N3, 1)
11360 a(j + N3, 2)
11370 a(j + N3, 3)
11380 a(j + N3, 4)
11390 a(j + N3, 5)
11400 FOR k = 1 TO N2

11410 C1 = (i - a(N1 + k, 5)) * C * R(i)
11420 IF C1 > S THEN 11500

11430 IF a(Nl + k, 4) + C1 > K7 THEN 11540
11440 N3 = N3 + 1
11450 a(j + N3, 1)

HOWM M

nnononou
HR R
m <3

[

11460 a(j + N3, 2) = 0
11470 a(j + N3, 3) = a(Nl + k, 3) + Cl1
11480 a(j + N3, 4) = N1 + k

11490 a(j + N3, 5)
11500 NEXT k

11510 N1 = j

11520 N2 = N3
11530 NEXT i

11540 k999 = 9999999994
11550 K8 = 0

11560 FOR k = 1 TO N2

a(Nl + k, 5)
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11570 IF a(Nl + k, 3) > k999 THEN 11600
11580 K8 = N1 + k
11590 k999 = a(K8, 3)
11600 NEXT k

11620 IF a(K8, 2) = 0
11630 O(a(K8, 1)) = 1
11640 K8 = a(K8, 4)
11650 IF a(K8, 4) = 0 THEN 11670

11660 GOTO 11620

11670 FOR i = 1 TO m

11680 IF i = 1 THEN 11720

11690 IF O(i) = 0 THEN 11730

11705 IF flag = 1 THEN 11720

11706 production = Q

11707 flag = 1

11720 Q = 0

11730 Q = Q + R(i)

11740 NEXT i

11800 production = production - inventory
END SUB

THEN 11640




APPENDIX D

ANOVA RESULTS -- GROUP I DATA

The following text provides the code used in the SAS

routine. Output consists of all subsequent pages.

DATA;

INPUT SET TYPE VAR COFVAR TBO LOT COST SHORT
PERSHORT DELERR PERERR BIAS;

DROP COFVAR BIAS;

CARDS;

PROC ANOVA;

CLASS SET TBO LOT VAR TYPE;

MODEL COST SHORT PERSHORT DELERR PERERR = LOT TBO
TYPE VAR SET(TYPE VAR) LOT*TBO LOT*TYPE
LOT*VAR LOT*SET(TYPE VAR) TBO*TYPE TBO*VAR
TBO*SET(TYPE VAR) TYPE*VAR LOT*TBO*TYPE
LOT*TBO*VAR LOT*TYPE*VAR TBO*TYPE*VAR
LOT*TBO*TYPE*VAR;

MEANS LOT TBO TYPE VAR LOT*TBO LOT*TYPE LOT*VAR
TYPE*VAR TBO*TYPE TBO*VAR LOT*TBO*TYPE
LOT*TBO*VAR LOT*TYPE*VAR LOT*TBO*TYPE*VAR
/ TUKEY;

OUTPUT OUT=PLOTDATA P=YPRED R=YRESID;

PROC UNIVARIATE NORMAL PLOT;

VAR YRESID;

PROC PLOT;

PLOT YRESID*YPRED;

PLOT YRESID*LOT;

PLOT YRESID*TBO;

120




CLASS

SEr

TME

LEVELS

VALUES

1234567091010 121314151617 081920212223 242526272626 3313232343536

246810
12345
)

0i
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SAS 163, WEONRCDAY APRIL 16 9RO
ANALYS!S OF VARIANCE PROCEDURE

CLASS LEVEL INFORMATION

NOMHES OF QBSERVATIONS 1K DATA SET = 40¢




DEPENDENT VARIABLE: COS?

SOURCE

MODEL

ERBOR

CORRECTED TOTAL

SOURCE

Lo?
T80
TPE

VAR

SET(VAReTTPE)
T80eL0?

LOTeTTRE

LOTeVAR
SETLOT(VARYTYPE)
TBO*TTPE

TBO*TAR

SETeTBO (VARSTYPEI
VARe?TPE
TBOSLOT+TYPE
T80sL0TeTAR
LOT+9ARVTYPE
TBO*TARSTYPE
Y50eL0T* VARPTYPE

OF

403

498

890

SUR OF SQUARES
3686092.21616365
227810.79103130

3913903.00710496

ANOVA S

046113.07232383
489507.17354240
.03925625
35043.05922935
50760.915255T7
1776305 47696152
1395.88338107
10879.88607234
99400.84238123
1593.279°0625
15280.23001237
120365. 34069452
2876. 717084521
11624.15518830
55271.14750878
13609.09291719
14383.25119386
38680.58979428

a8
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ANALYSIS OF VARIANCE PROCEDURE

WEAX SQuass

9146.63080004

45929504968

FVALLE

514.98
26644
0.00
38.18
1.9
22.12
0.76

1.7%
0.87
4.16
2.1
6.27
..58
11
741
7.83
5.26

PO F

0.0001
0.000:
0.9926
0.0001
¢.0001
0.0001
0.5516
0.0030
0.0001
0.48M4
0.000}
¢.0001
0.0.26
0.0693
0.000]
0.0001
0.0001
0.000)

F VALTE

19.81

Pk F
¢.0001
BOO? WSE

204316108

. WEDNESIAY. AFEIL 19 (09

£-SOUARE

G004

.o

46 4288

Co27 EAX

4700759000




DEPEWDENT VARIABLE: SHORT

SOTRCE
WDEL
ERROR

CORRECTED T0TAL

SOURCE

L?

180

I

vik
SEMVARTTPE)
T80eL0T

LOTITRE

LOTsVAR
SEYLOT{TARSTYPE)
TBOSPTPE

TBOWWAR

SETTB0 (VARTYPE)
VARITTPE
TBOALOTSTTRE
TBOsLOT+ VAR
LOTeVARVITPE
TBOVARYTYPE
TBOsLOTVARCTYPE

oF

403

"

2]

=3
-

— -—
s <3 —
P .

o —
> -

o - -

SUM OF SQUARES
171562, 19431764
57225. 64424567

238787.83856351

ANOVA 88

30486. 16960873
16042.049832686
123. 70601407
1857610674108
15079. 47319543
20314.03600492
452. 24153184
1813.969732¢1
31586. 41024663
496.61755651
6002. 2770044
20508.03604712
1266.68723900
1146.31753601
42011825534
672.3341262)
992.002216M1
1560.38107041

SAS
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ABALYSIS OF VARIANCE PROCEDURE

EAX SQUARE

42571264090

118.3742827%

F VALOE

66.06
34.76
1.0
80.50
4.2
11.00
0.98
1.9
2.21
1.08
6.57
1.4
1088
0.62
1.16

2.1%
0.8%

Pk F

0.0001
0.0001
0.3006
0.0001
0.000}
0.0001
0.4180
00469
0.0001
0.3676
0.0001
0.0038
¢.0010
00870
0.2513
0.2142
0.07M
0.633¢

F VALUE

16:3! WEDNESDAY. APRIL i¢. 968 3

PROF
¢.0001
ROC? MSE

167412424

k-50Uaze

0.749875

c.¥.
60,6570
SHORT MEAN

17.64706882




DEPENDERT VARIABLE: PERSHORT

SOURCE DF SUM OF SQUARES
MODEL 403 281450.71276121
ERROR 496 114574.00837792
CORRECTED T0TAL 899 396024.72113013
SOURCE DF ANOVA SS
Lwr 4 20555.52434800
T80 4 460289351021
M 1 7877.56638¢59
VAR 2 52003.93702268
SED (VARTYPE) 3 38644.01134356
TBOSLO? 16 2030604938346
LoTeTTPE 4 633.97679372
LOT¥AR [ J066.40158821
SEYeLOT (VABeTYPE) 124 £3655.58215600
TBOSTYPE 4 1129.20150214
TBOsTAR 8 5343.82861746
SETTBOVARYTTPE) 11¢ 7006¢. 38072504
VAReTTPE 1 0.00000000
TBOSLOTeTYPE 16 3305.08393570
TB0«LOToVAR 32 6903.08742218
0T TARTYPE 4 399.68028756
1B0¢VARSTYPE 4 4700.95004523
TB00LOTeTARYTIPE 16 3713.60679058

SAS
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ANALYSIS OF VARIANCE PROCEDURE

MEAN SQUARE

0698.3888654)

230.99598463

F VALUE

22.28
4.08
310
112.56
5.44
5.49
0.6
1.66
1.92
1.22
.89
2.45
0.00
0.68
¢.03
0.43
8.00
1.00

PU)F

0.0001
0.0006
0.06001
0.0001
0.000)
0.6001
0.6018
¢.1056
0.0008
©.3004
0.0037
£.000)
1.0000
6.5761
0.5739
0.7851
0.0005
0. 4499

F VALUE

3.0

16:30 WEDNESDAY. PRI 10 L0664

0B F
0.0001
k00T WSE

15.19855206

E-SQUARE

0.710890

cy.
§7.8528
PERSHOE? MEAN

262712787




DEPENDENT VARIABLE: DELERR

SOURCE
MODEL
ERROR

CORRECTED T0TAL

SOURCE

Lot

180

TIPE

ViR

SET(VARYTYPE)
TROSLOT

LOTeTYRE

LOTs7AR

SETeLOT (VAR'TYPE)
TBOSTYPE

TBO*VAR
SEMTB0(VARITIPE)
FARITYPE
TBO*LOTTYPE
TBOLLOTeVAR
LOTTARCTYPE
THOAVABe?TPE
TBOeLOT#VARCTYPE

DF
403
L]

899

=
-

fe3 —
Lo~ SR N

»
-

e
o o e

o - -

SU OF SQUARES
430070.22330010
89054.58284487

$268133.80615307

AKOVA 88

1306.58413127
9130618279499
1947.08612401
205115696885
141211.50848509
3300.4172644)
1552.03821205
17860563204
39326.33911734
144448697000
0039.00520322
85304 .6573500!
28915.7234810)
44%59.82212702
6196.20660461
216.24212007
2070213150609
¢.0000000¢

SAS
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16:3} WEDETSIAY. APEIC 16 980 %

ABALYSIS OF VARIANCE PROCEDURE

MEAN SQUARE

1089.5266087!

179.54552003

1238
0001
[11})
0038
0001
3085
0723
2118
000}
0917
000!
0002
0001
0776
1583
8
0001

F TALTE PE F
1.82 0.
127.14 e.
10.84 0.
5.7 0.
850N 0.
1.18 e,
2.16 0.
1.24 0.
nm 0.
2.0 0.
6.20 0.
2.8 0.
161.05 0.
1.85 0.
1.08 0.
¢.30 0.
26.83 0.
0.00 L

0000

F VALE PB)OF
6.07 0.0001
BOOT MSE

13.30648008

B-SOUARE

¢.631379

c.v.

(. 6649

DELERE MEAN

1657016464




DEPERDENT VAZIABLE: PERERR

SOURCE

kil 4

CORRECTED TOTAL

SOURCE

10t

T8O

ME

VAR

SET{VAReTYPE)
TBOLOT

LOTTYRE

LOT»VAR
SET+LOT{VARATYPE)
TR0 TYPE

TB0e¥AY
SETYTBO(VAReTTPES
VAR'TYPE
TBOsLOTPTTPE
TBOSLOT+ VAR
LOte VAR TTPE
TBO*TARYTTPE
TBO*LOT+ VAR TYPE

(3

¥

403

49¢

899

SUM CF SQUAAZS
424046 80302476
1054225698010

444462 .86600486

AKOVA SS

23471011182
1225002562361
12817. 17504600

219300.40495487
158217. 40130984

841.88154835

226.87175781

§89.60364738
808294662557

32.96368533
3465. 19045606
14380.82704713
©.00000000

875.8.329835
3083.52100212

14.20115316
245522492087
0.00000000

126

YSIE OF VARIANCE PROCELVRE

MEAY SCUARE

0844860073

36.401325€

F VALTE

1.49
”n
325.30
278291
129.53
LY
1Ly
1.87
1.65
0.21
10.99
2.9
.00
1.36
2.48
0.08
15.98
0.00

PR:F

0.2042
¢.000!
60002
0.0001
0.000)
¢.1708
0.2197
0.0525
0.0001
0.9333
0.0001
0.000!
1.0000
¢.1416
0.0001
0.9e55
0.0001
1.0000

FUALTE

.76

H3K) BREIL 9. e
b F L-S0URE
¢.000 1.956022
ROOT MEE
£.2TT04744

LA

DEEERE MEAN

45.£2958830
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S4S 1€-30 WEDEESIAY. APRIL 14, 1960
ANALYSIS OF VARIAMCE PROCEDURE
TUKEY'S CTODENTIZED RANGE {RSD) TEST FOE VARIABLE: C0ST
WOTE: TRIS TEST CONTROLS THE TYPE | EXPERIMENTWISE ERROK RATE.
BUT GENERALLY BAS A HIGHER *YPE I ERBOR RATE THAN REGWO
ALPBA=0.05 DF=4dt MSE=450.296
CRITICAL VALDE OF SPUDEWTIZED RANGE:3.872
MIRIMOM SIGUIFICANT DIFFERENCE=6.1851

MEANS WITH TEE SAME LETYER ARE NOT SIGNIFICANTLY DIFFEREWT.

TUXEY  GROUPING EA §oOLT
A 110.333 180 §
B 45,125 180 )
¢ 20.362 180 3
g 27.052 80 2
g 23415 180 ¢
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SAS 1630 WEDMELDAY. APEIL iv. (iwy
ABALYSIS OF VAKIANCE PROCEDURE
TUKEY'S STUDENTIZED BANGE (ESD) TEST FOB VARIABLE: Su0R?
SOTE: THIS TEST COFTROLS THE TYPE ! EXPERIMENTWISE ERROL RATE.
BUT GENERALLY HAS & EIGHER TYPE [: EEROE KATE THAN REGAC
ALPBA=0.05 DF:49¢ MSE=115.374
CEITICAL VALUE OF STUDERTIZE! RANGE=3.672
MINIMOM SIGNIFICANT DIFFERENCE=3.0990

VEANS WITE THE SAME LEPTER ARE MO? SIGNIFICANTLY LIFFERERT.

TOKEY  GROUPLEG A | By
i 24.557 180 +4
i
B [ 2i.849 180 2
B
B 19.866  18¢ 3
¢ 14.010 180 3

[ 8.253 180 S
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SAS o3l WEDNESDAY APEIL lb. L0k
ANALYSIS OF VARIANCE PROCEDURE
TUXEY'S STUDENTIZED RAMGE (MSD) TEST FOR VARIABLE: PERSEGRT
NOTE: THIS TEST CORTROLS THE TYPE ) EXPERIMENTWISE ERBOX RATE.
BUT GENERALLY HAS A HIGHER TYPE 1] ERROR RATE THAK REGW
ALPHA=0.05 DF=496 MSE=230.006
CBITICA VALUE OF SYUDENTIZED RANGE=3.872
WINIMOM S1GNIFICANT DIFFERENCE=4.3863

MEANS WITH TEE SAME LETTER ARE NOY S1GNIFICANTLY DIFFERENT.

TUKEY  GROVRING EAN ¥ L0?

[} 32.814 180 ¢
[}

] i 200191 180 2

B

B ¢ 26.956 180 3
¢
¢ 231535 180 1

D 18.861 180 5
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S48 J8:3. WEDNEIDAY. RPRIL 10 [wky

=
b

ANALYSIS OF VARIANCE PROCEDURE

TUXEY'S STUDENTIZED RANGE (HSD: TEST FOE VABIASLE: DELERR
WOTE: TRIS TEST CONTROLS THE TYPE | EXPERIMENTWISE ERROE RATE.
BUT GENERALLY HAS A EIGEER ?YPE 1! ERROE RATE THAN REGWQ

ALPHA0.05 DF=490 MSE=176.%46
CRITICAL VALUE OF STUDENTIZEL RANGE:) 872
MINIWUM SIGEIFICANT DIFFERENCE=3.867

WEANS WITE THE SAME LETTER ARE K0T SIONIFICASTLY DIFFESENT.

TOKEY  GRCUPING | ] § Lo?
18,223 160 4
17.490 160 2
16.421 180 1

15.960 180 5

L I S

4.7 8¢ 3
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ABALYS]S OF VAKIANCE PROCEDURE

TUKEY'S SYUDENTIZED RANGE (HSD) TEST FOR VARIABLE: PERERR

131

16:3. WEDEESDAY

MOTE: THIS TEST CONTROLS THE TYPE | EXPERIMENTWISE ERROR RATE.
BUT GENERALLY HAS A BIGEER TYPE 1! ERROB RATE THAN REGWQ

ALPHAZ0 .05 DF=496 MSE:3¢ 4012

CRITICAL VALUE OF STUDENTIZED RANGE:1.672
NINIMUM SIGNIFICANT DIFFERENCE:1.8118

MEAKS WITH THE SAME LETTER ART NOT SIGNIFIC

TUKEY  GRUTPING

- e e

4€.

EA

2984

.67

0421

.13

.9083

LY DIFFERENT

3

Lt

3

AFRIC 19 1089
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SAS 16:3 WEDNESIAY. APEIL l¢ 966 12
ABALYS]S OF VARIANCE PROCEDURE
PUXEY'S STUDENTIZED RANGE 1HSD! TEST FOR VARIABLE: COS?
NOTE: TH!S TEST CONTROLS THE TYPE [ EYPERIMENTWISE ERNOR RATE.
' BUT GENERALLY BAS A BIGHER TYPE II ERBOR HATE THAK REGWQ
ALPHA=0.05 DF=49f MSE=455.296
CRITICAL VALUE OF STUDENTIZED RANOE:3. 872
MININUM SIGNIFICANT DIFFERERCE=¢.1851

MEANS WITH THE SAME LETTEN ARE MOT SIGNIFICANTLY DIFFERENT.

TOKEY  GROUPING EAN R B0
] 01,632 180 10
B 45.206 180 8
g 41,132 180 2
g 2050 180 6

¢ 28.025 180 4
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Sie L6:3. WEDVESIAY  APRID 1. I0f¢
ADALYSIS OF VARIANCE PROCEDURE
TOKEY'S STCDESTIZED RAWGE (HSD) TEST FOR VARIABLE: SHORT
BOTE: THIS TEST CONTROLS THE TYPE 1 EXPERIMENTWISE ERROER EATE.
BUT GENERALLY HAS A EIGHEE TYPE I1 ERKOR BATE THAN EEGWQ
ALPHA<0.05 DF=40t MSE:115.3%¢
CRITICAL VALUE OF STUDEKTIZED RANGE:3.872
MININUK SIGNIFICANT DIFFERENCE:=2 0969

MEANS WITH THE SAME LE?EE ART MOT SIGNIFICANTLY DIFFERENT,

TUNEY  GROUPING EN 5 TRC
i 23.09% 180 10
B 19.61¢ 180 &
]
B 18.610 180 6
8
] 16.622 180 4

4 10.312 180 2

-
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HY 163, WEONESDAY  RBRIL 10,

ABALYSIS OF VARIANCE PROCEDURE

TOKEY'S STUDENTIZED RANGE (HSP TEST POk VARIASLE: PERSHORT
BOTE: THIS TEST CONYROLS THE TYPE ! EXPERIMENTWISE ERROR RATE.
BUT GEWERALLY HAS A EIGEEE TYRE I! ERROR BATE THAL REGWQ

ALPHA=0.05 DFz496 MSE=230 D96
CRITICAL VALUE OF STUDEWTIZED RANGE=3.872
MINIMOM SIGBIFICANY DIFFERENCE=4. 3863

MEANS WITE THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

TUKEY  GROTPINC A8 X T80
A 36.023 180 10
A
B ] 27.60) 180 4
B
B 25.440 180 2
)
B 24210 I8¢ ¢
1]
B 24.082 180 8

vy

"
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SAS 10:31 WELNESCAY. APRIL 19, (089
ANALYSIS OF VARIANCE PROCEDURE
TUXEY'S STUDEWTIZED RANGE 'NSD! TESY FOR VARIABLE: DELERR
BOTE: THIS TEST CONTEOLS THE TYPE | EXPERIMENTWISE ESROR RATE.
BUT GENERALLY HAS & BIGHER TYPE 11 ERBOR RATE THAN REGWQ
ALPHA=0.05 DF=408 MSEx170 548
CRITICAL TALCE OF STUDENTIZED 2ANGE:Y €72
MINIMOM SIGNIFICANT DIFFERENCE:3 867!

ME4NS WITE THE SAME LETTER ARE MOT SIONIFICANTLY DIFFERENT.

TIXEY  GROUPING A ¥
1 29.989 180 10
B 29.408 180 8
¢ 16838 180 6
] 8.93 180 ¢

E 2.3% 180 2
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SAS %53

ABALYSIS OF VARIANCE PROCEDURE

TUKEY'S STUDERTIZED RANGE (HSD) TES? FOR VARIABLE: PERERR
NOTE: THIS TEST CONTROLS THE TYPE ! EXPERIMEWTVISE ERROR RATE.
BU GENERALLY HAS & EIGHER TYPE I! ERROR RATE TRAN BEOW

ALPEAZ0.05 DFs4pé MSE=39 40)3
CRITICAL VALUE OF STUDENTIZED RANGE:3.6872
MINIMON SIGEIFICANT DIFFERENCE:1.8116

MEANS VITE THE SME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

TUXEY  GROU¥ING [ 1] ¥ 180
] 40.0441 180 10
: 49.4533 180 8
] 46.27195 180 ¢
¢ 41.1000 180 4

D 40.3160 180 2
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SAS 16:31 WEDEESDAY AREIL 16 1963 1Y
ANALYSIS OF VARIANCE PROCEDURE
TUKEY'S STUDENTIZED RANGE (HSD: TEST FOK VARIABLE: COS?
NOTE: TBIC TEST CONTROLS THE TYPE | EXPERIMENTWISE ERROE RATE.
807 GEWERALLY HAS 4 BIGHEE ?YPE 1! ERROR RATE THAN REGWO
ALPHA®0.05 DF»406 MSE=456.206
CRITICAL VALUE OF STUDEKTIZED RANGE:2.779
KIDTNOM SIGRIFICANT DIFFERRNCEs2.922]

WARNING: CELL SIZES ARE MOT EQUAL.
HARMONIC MEAN OF CELL SI2ES+415.278

MEANS WITE THE SME LETTER AEE NOT CIGNIFICANTLY DIFFERENT.

TOKEY  AROUPING A 1 PR
[} 40,182 51 0
[

[ 4.8 325 )
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SAS 1600 WEINEIDAY ARRIL I, L9EY
ANLYSIS OF VARIANCE PROCEDURE
TUKEY'S STUDEXTIZED RAMGE 13SDy TECT FOR FARIABLE: SHORY
BOTE- THIS TEST CONTEOLS THE ®YPE ! EXPERIMEN™ISE ERZCE KATE.
BUT GENERALLY HAS A YIGEEE TYPE I ERROR RATE THAN SECWQ
ALPHA=0.05 DF=49¢ MSE:)1S 374
CRITICAL VALUE OF STUDENTIZED RANGE=2.779
NINIMTM SIGEIFICANT DIFFERENCE = 4046

WARNING- CELL SIZES ARE 80T EOUAL.
HARMONIC MEAR OF CELL SI2ES=415.2%8

MEARS WITE THE SAME LEYTER ARE NOT SIGNIFICANTLY DIFFERENT.

TOKEY  GROUPING [ 1] N TTE
i 17.92%¢ %% 0
)
) 1.153% 318 1
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SAS 16:30 WEDNESDRY. APRIL 4. lvBy U
AMALYSIS OF VARIANCE PBOCEDURE
TUKEY'S STUDENTIZED RANGE (HSD' TEST FOB VARIABLE: PERSHOR?
NOTE: THIS TEST CONTROLS THE YYPE | EYPERIMENTWISE ERBOK RATE.
BUT GENERALLY HAS & BIGHER TYPE 17 ERROR RATE THAN REGWQ
ALPHA=0.05 DF=496 WSE<23¢.086
CRITICAL VALDE OF SYUDENTIZED RANGE=2.779
MINIMID SIGNIFICANT DIFFERENCE=2.0723

WARKING: CELL SIZES ARE NOT EQUAL.
BARMONIC MEAN OF CELL SIZES=4]%.278

MEANS WITH THE SAVE LETTER ABE NMC? SIGNIFICANTLY DIFFERENT.
TUXEY  GROLPING EAY ¥ TR
[} 8495 5% ¢

B 22,33 325 )
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SAS i3 WEDNEIDAY. MRRIL 16 a9by
ANALYSIS OF VARIANCE PROCEDURE

TUKEY'S SYUDEKTIZED RANGE (¥SD: YEST FOR VASIABLE DELERR
NOYE: THIS TEST COYTROLS TEE TYPE ! EXPERIMEWTWISE ERROK RATE.
BUT OENERALLY BAS 4 RIGHER TYPE 1! ERRON RATE THAN REOWQ

ALPEA=0.05 DF=406 MSE=179.546
CRITICAL VALUE OF SYUDENTIZED hANGE=2.779
MINIMUM SIGNIFICANT DIFFERENCE:..827

WARRING- CELL SIZES ARE NCT EQUAL.
HARMOKIC MEAN OF CELL SIZES=415.278

IEANS WITE THE SAME LETTEY ARE MCT SIGNIFICANTLY DIFFERSRT
TUKEY  GROUPING EAN X TR
A le.5266 3¢ )

B 154844 875 0
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SAS 1€:3] WEDKESDAY. APRIL M6 log¢ 2!
ANALYSIS OF VARIAKCE PROCEDURE
TUXEY'S STUDENTIZED RANGE (ESD) TEST FOR VARIABLE: PERERR
NOTE: TEIS TEST CONYROLS THE TYPE | EXPERIMEWTWISE ERROK RAE.
BUT GENERALLY HAS A HIGHER YYPE 1. ERBOR RATE THAN REGWQ
ALPHA=C.05 DF=486 MSE=39 4013
CRITICAL VALUE OF STUDEWTIZED RAMGE=2.779
INIMUM SIGNIFICANT DIFFEBENCE-. 85587

WARNING: CELL SIZES ABE NOT EQUAL.
BARMORIC MEAN OF CELL SIZES=415.276

MEANS ¥17H TFT SAME LEPTEK ARE NCT SIGEIFICANTLY LIFFERENT
TOKEY  GRODPING EA R TIRE
i 466567 35 0

B 40.6000 325 )
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SAS (030 WENNESDAY. MFRIL 19, 1960 20
ANALYSIS OF VARIANCE PROCEDURE

TUKEY'S STUDENTIZED RANGE (8SD: TEST FOR VARIABLE: £0ST
NOTE: THIS TEST CONTHOLS THE TYPE | EXPERIMENTWISE ERROE KATE

ALPHA=0.05 CONFIDENSE=0 05 DF=496 NSE=455 206
CRITICAL VALUE OF STUDENTIZED WANGE:3.32S

COMPARISONS SIGNIFICANT AT TEE 0.0% LEVEL ABE INDICATEL BY ‘ves’

SIMULTANEODS SIMULTANEQUS
LOWER  DIFFEREMCE PPER
VAR CONFIDENCE ~ BETWEER  CONFIDENCE
COMPARISON LiMT KEANS 3104
3 -2 8.932 14.367 19.802  e0e
3o~ 13.664 18.702 B
2 -3 -19.802 ~14.367 “£.9327  ene
7 -1 0.553 4.335 8117 e

1 - -390 -18.702 S11.664 e
2 -8.117 -4.335 -0.553 eee




143

N Y 16:3. WEDNESDAY APRIL 1§ 108¢
ANALYSIS OF VARIANCE YEOCEDURE

TUKEY'S STUDENTIZED HANGE (HSD! TESY FOR VARIABLE: SHORY
WOTE: TBIS TEST CONTROLS THE TYPE 1 EXVEKIMENTWISE ERROK RATE

ALPHA=0.05 CONFIDENCE=0.95 DF=49¢ WSE=115.3M
CRITICAL VALUT OF STUDENTIZED RANGE:3.325

COMPARISONMS SIGNIFICANT AT THE 0.0% LEVEL ARE IEDICATED BY 'eee’

SIMULTANEQUS SIMILTANEQDS
LOWER  DIFFERESCE UPPER
VAR CONFIDENCE  BETWEEN  CONFIDENCE
COMPARISON LIkt MEANS LINI?
3y -2 6.2010 6.0148 11,7387 eee
3. 10.8052 13,4202 15,0453 ene
] -11.7387 -8.0148 -6.2010  eee
2 -1 2.5007 4.4054 6.301) s
1 -3 -15.0453  -13.4202  <10.8052  eer

1 -2 -6.3011 -4.4054 -2.5087 eee
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SAS 1e:3, WEDNESLAY. APRIL iy ey
ARALYSIS OF VARIANCE PROCEDURE

TUXEY'S STUDENTIZED RANGE (ESD) YEST FOR VARIABLE: PERSHORT
BOTE: THIS YEST CONTROLS THE TYPE ! EXIPERIMENTWISE ERROR KATE

ALPHA=? 0% CONFIDENCE=0.9% DF=496 WSE-230.096
CRITICAL VALUE OF STUDEFTIZED RANGE:3.325

COMPARISORS SIGNIFICANT &Y THE 0.08 LEVEL ARE INDICATED B8Y ‘eed’

SIMULTANEOUS SIMULTANEOUS
LOWER  DIFFERENCE UPPER
Va2 CONFIDENCE  RETWEER  CONFIDEMCE
CUNFAR]SO8 Ll MEANE AL 154
3o-2 11,4351 15.2893 19.143¢ ere
3 -1 18.9225 22.4954 26.068)
2 -3 S19.1434 -15.2803 114351 wee
7 - 4.5238 1.2062 0.868%  ree
1 -3 -26.0683  -22.49%¢  -16.8125  ee

1 -2 -9.6885 -7.2082 -4.5238

o
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SAS 16:31 WVEDNESDAY. APEIL :6. l9EY
ABAYSIS OF VARIAMCE PROCEDURE

TOKEY'S STUDENTIZED RANGE (BSD) TEST FOR VARIABLE: DELESR
NOTE: THIS PEST CONTROLS THE TYPE 1 EXPERIMENTWISE ERROR RATE

ALPBA=D.05 CONFIDENCE=0.95 DF:496 NSE:179.546
CRITICAL VALUE OF STUDENTIZED BANGE-1.325

COMPARISONS SIGNIFICANT AT THE 0.05 LEVEL ARE INDICATED BY “wee’

SIMOLTAREQUS SIMCLTANEOUS
LOWER  DIFFERENCE UPPER
VAR CONFIDENCE  BETWEIEN  COKFIDINCE
COMPARISON Lt EANS Lt
3 -2 0.7936 4.1015 7.5895  eee
3 o-) 1.2625 LN 75024 eee
7 -3 -7.5608 -4.191% -0.7036  wer
2 -1 -2.1140 0.2509 2.8157
Po-3 -7.502 44424 -1.2925 e

1 -2 -2.6157 -0.2508 2.1140

i)
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SAS 16:3; WEDNISIAY. APEIL 6. 1989
ANALYSIS OF VARIANCE PROCEDURE

TUKEY'S SYUDENT;ZED RANGE (BSD) TEST FOR VARIABLE: PERERR
NOTE: TRIS TEST CONTROLS THE TYPE ] FIPERIMENTWISE ERROR RATE

ALPHA=0 05 CONFIDENCE=0.05 DF=40¢ MSEz3% 4013
CRITICAL VALUE OF STUDENTIZED RANGE:). 325

COMPARISONS SIGEIFICAKT AT THE 0.0% LEVEL ARE [MDICATED BY "eee’

SIMJLTANEOUS SINULTANEODS
LOVER  DIFFERENCE UPPER
VAR CONFIDENCE  BETWEEY  CONFIDENCE
COMPARISON e EAS 91134
3y -2 32,3538 32 0488 IE5AM e
3.1 45,1264 46,6020 46.01T17 e
S -35.8373  -33.0455  -32.3838 e
1 -1 11.5487 12.656% 12.7643 e
1 -3 -48.0777 468020  -45.1264 e

-2 S1L643 -12.65€5 -11.5487 ees

K
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SAS

AKALYS!S OF VARIARCE PROCEDURE

cost

38.351202
45068724
41.637606
36.587900
41.015928
29.6139%
26165954
25 66904
23.110068
32.546886
36.870735
23.8:3133
24.535388
16.666236
43.268506
4€.045366
22.264563
27.933226
18449472
111.31044!
4.741926
18104296
27.032730
14263387
323.516550

cost

43.279024
48.300002
28.078392
26.8900%8
29.588842
26.080137
4063509
22.268700
110.902038
109.327483

cos?

38.940171
46.6784%%
74.004228
25.861790
26914043
3643187
26 524860
28383247
42 920488

€S
SHoST

11.5868706
8.2236813
11.6952362
19.9064994
0. 1463710
12.7320078
16.£790863
16.3874692
20.9525084
14.356895¢
14.0820904
22.£783861
16.6623167
26.1518947
11.4764432
1£.2266611
5. 0863553
21,2020
268533042
£ 1497322
16.42371782
341762860
20.3212882
34.9206342
0.5343015

SHORT

148156548
12.585382)
217104678
21.2478440
20.3116004
10.0787320
23. 8606455
257800233
8.9220331
7.06078M7

Spox?

104301340
17.0831200
21.5706230
17.9259780
21.7685711
35.9501784
16.3054688
10750425
13.560468¢

PERSHORT

27.6259877
21.6120818
25.6601953
282469059
24.0292803
22.128M418
2%..22066¢
124650052
29.2517028
24.635¢298
177349140
2¢ 5706706
21.6179099
32.3546005
20.7745346
18.262824!
316478554

1L.71745000
173331841
309013830
176002202
31 6426206
42427880
7.5319682

PERSRORY

25.5573683
19.0363308
312755307
25.5021644
30.2502503
21.12703%82
341635841
10.4254802
21.2305619
146684231

PERSHORY

16.2018460
26.2007320
464003844
4.8
321724424
42.0082080
11.06%56%0
27.1688%2]
45.120.600

16:3: WEDNESDAY

OELERR

3.150686]
1.4616322
3 4516604
1.399.881
2.4092840
. 416306¢
§.20M%
E 4( N ’-1/.‘

10.202¢562
6.4141020
15 8985332
178875421
15 4453788
20.9582618
12.6003438
20 3202606
261608494
23.0071438
25.1030292
27.54183%8
32110205
31.006%162
23.426288%
32.7507800
30.63¢1548

DELERR

152574148
18. 4808570
18.5895387
19.0830507
13.2643806
17.3618838
15.6083483
22.6883172
16.4021920
15.0193600

DELERR

15.5498420
175644117
17. 3487408
15.6002832
177106348
23.30M812
14.65%63%0
14.2001070
16.1877489

PERERR

40.755035¢
400517133
40 6616026
367407974
4. 3542%8¢
{1 76476758
42 Sy
(I lias b H
47 3e5568)
42.064045¢
44 583404
LA M
4%.2873000
47.8711189
448034000
47.5732508
50.2491019
48.£39¢100
46.867456¢
806367450
50 60994
£6.1007253
448800411
§0.5.872%)

LIRS

PERERK

48 821139
40.6281308
40.2044003
40.007678¢
47.5009052
403240700
48.5610562
42.1805086
49.3744530
30 8604423

M

38.2280M1
48.0791480
863048828
154110360
49.08208%8
83 7842038
350506523
47.2847678
79.0036478

A¥ELL Iy

1986

an
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SAS

ANALYSIS OF VARIANCE PHOCEDURE

cos?

21735546
23. 188197
30.634749
108 214568
112616401
12€ 786387

cos?

4..552428%
45.8098289
4€.120025)
49.3420786
01.9571411

cost

42.3513070
389754576
22 26462
2€.7850057
28.291804)
31.86910%)
441466087
47.0814504
02 3954688
01.111950

cost

41.33008%
41.705217
39.045318
25 078040
27.766873
40.301020
15800017
16097509
45.404832
37508008
47.10008%
71.570865
86.092220
01715679
113.)6086%

IEARS
SHOR?

21.1604820
26.2467084
344257400
6.1542218
$.36340%
141624184

SBORT

14. 3540646
14.5615458
16793413}
21.3012887
27.8572848

S8ok?

10.628%809

§.3873002
16.6363644
16.5066343
19.828275)
164352105
19.6075162
194720384
22.6387384
23047573

SEOMY

9.1807235
11. 1145088
13.0604838
132376204
108395363
13.0800814
13.6145188
10.538%7
36.5506085
14.3375112
21. 7146278
35.3136490
21.6140017
22.00400%3
3Lamesnn

PERSBORT

295030136
32.7511812
46.221082¢
12.617422¢
2).8074666
37.3524563

PERSHORT

21.18%5728
2¢.5840610
30.0611387
25.1391303
434403082

PERSHORT

269436864
18. 2402057
29.4172402
243870793
257796203
214340700
27.0000387
180184240
31.3356307
27.6097830

PERSHORY

19.453759¢
25.8024474
48.3873024
195481387
32.4704148
49.0082818
18.0985042
283780704
42.40838M2
10.9530812
25.9400062
38.0040060
27.170308)
310716450
301250836

16:3. EDNESDAY APEIL 19

DELERR

10.0856953
151561178
21.51564%
14.18215%8
15.86060888
23.235048!

DELERR

10.4873319
23.960307!
1.8

$.63271%0
20.3169520

DELERK

2.7901228
1.8501002
§.3021060
10.059955¢
153837926
18.3801083
23 5820034
18 .63¢923%
21.2618%72
33.7050021

DELER

1.516M19
1.3005842
5.064872Y
7.0054800
6.8527708
17.6522148
16.3633748
124623858
261083810
22.1901010
26 8921221
32.5026985
30.7989257
32.06681768
10.2085070

PERERR

36.5013288
47.8476620
82.3621:12
3£.2009328
47.4071382
847042600

FERERE

343956306
37.1085113
40.32300M
46.7:10101
82.0818262

PERERE

43.0526050
35 4748104
488324544
38.2877854
49.2387680
41.032609)
92 5084106
440476008
32.6490097
451567788

PIRERR

31.1304086
42.7287€78
71.1632188
331103388
4512478
80.0087260
38.8230038
466094500
87. 1406262
37.56450%4
52.2500683
90.6351032
367697400
$4. 4846300
80 6524560

198y

2@
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SAS

ANALYSIS OF VARIANCE PROCEDURE

cos?

41.311847
33.007586
43.744716
47.411202
43.165682
37.8712709
39.524319
39 700390
42.350622
I 8531
30.03195%
28.874418
30. 308780
27.042955
28.257156
24.62m78
24.279529
21.041015
32.664203

o.339168
34499644
4118818
43.816962
23.250635
24825088
24 .116688
20.361€13
18.435983
38.184163
$2.283081
42787987
51.000478
23.550800
20.044284
28.140484
27.568%9)
18.958849
17.548620
107.20518)
118.43032)
67.73381¢
87.140712
13.078608
16.734202
29.14%23¢
30.357230
17192430
14.617918
1190002
0 209732

EAXS
SHORY

11.5%83140
11.6409322
. 4864454
5.9885602
12.4505065
16.3588473
108152763
11.0670042
¥.8342023
7.92020M2
13.0889938
15.1004129
17.6410680
140754011
172402760
20.4172008
268913361
2:.0600056
14.3192287
4. 4200800
17.68}5107
6961920
22.9850191
22.1266815
16.4927830
171930831
2¢.1991013
2¢ 0882754
12.7690915
0.1604400
15, 4632814
14.8000333
24.2077000
26 9703530
22470847
1511ns
29.2238013
30.9676431
7.0250400

1.0MIn
16.2782080
16.6813172
34.102143
341658331
298969513
2E. 3028073
N.1m9128
3p.1802188

LA

L2023

E

PERSHORT

31.7391568
20.3488423
25.0280427
1%.5695525
26.5076300
18.6085800
1.."0%0e38
221366968
26.71376187
19.2376048
28 8954027
16.5875648
317427508
22.8230738
183208377
274145030
7843034
31.7423638
264831727
21.3680000
20 0821703
13.67¢168!
246012400
30.0550462
28.3521514
15.2410042
329874873
1.238510
22.8720084
17.063460)
21.1813441
13.2077504
3.952610)
25.0001403
250834658
148085982
32. 4408200
30.59%0012
2].3764488
10.1796363
29.11%68)7
34.0607282
40.0321393
33.2622099
12987469
26 .26436!7
43.840%012
3¢ 417190

B 835y
54045084

16:31 WELEZILAY aFRIL

DELERR

3.5406020
2.4607285
2.5149629
-0.3485882
4.214502)
21020114
0.80£2994
14445188
2.8701883
1.5903031
07510646
11.9977408
9.602043)
8.4934780
1.1350028
104260048
£.8673622
1¢.5630917
5.9594618
7.20648%5
141850922
18.930005¢
16.132659¢
14.8521044
139059178
181690405
16.6926481
240087380
11.0018460
15.9820528
18. 1724037
Jo.aMTre8
24.7710207
1821816
23.1329238
227846108
22.3015001
31.9703496
29.8371102
1.011191
30.6372498
29.1800243
26.9260077
38,210
17.8335%68
333280847
.ann
44059910
3T uprEen
28291828

PERERR

435478783
35.81601662
43.0366178
34 7107288
435041645
35670357
420607304
385203769
420099685
354064677
45.4325385
3§.0430718
46.9420.30
.6e124M
4. 247234
38.2:19082
457670483
361882800
44700838
nunpus
461822930
400577392
51.8602196
39 7371808
46.2983048
40. 9848746
50.31%6087
43.5103482
47.5230683
30.0730518
49.4841078
44.2278088
$2.6125083
46.0670400
92.2072081
42.1683360
52.7188000
44.6280797
95 4333048
42 0438046
54.9087128
43003787
920201922
48.7200062
48 14735013
43 5849848
$2.0604028
4 ey
8¢ 0082708
A3 808822

HY

1984

50
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SkS

ANALYSIS OF VARIANCE PROCEDURE

cost

35.052815
41.000691
41.557320
47.600213
44.792258
35.450096
41.004741
41.56535)
44.320674
43.728544
40. 106849
20.099238
40.707662
40.178933
44.090362
26.358100
27.986740
4€.217230
26158053
20.261732
4. 135640
21.236008
25.979820
3.8
20.680230
22.605149
33.940186
26.946743
33.000910
45.948590
31085148
37.84607%
54.281344
20.5%5307
21.00%482
30.825%588
21.7121704
23.2622m
3. 500740
17.08708%
18.683208
32.222102
36.673043
46.600417
62118380
43.204830
38.308100
1.912086
18.803469
21.20%0%6
30400004
23.80%820

MEANS
SBoR?

10.2024193
14.0612002
116809524
6.96:3058
7.9692478
13.7125M8
106759642
11.8368600
15.4787%00
10.2501307
11.5074367
12.2008760
7.7876983
10. 1980985
12.2672614
6.07797M18
18.9340083
17.70355%0
13.5376084
188107735
245850540
16.2989216
18.116%683
27.3378%80
17.2189433
26.1005670
24.5616880
11.0548938
17.2156918
1. 24675018
10.0030877
11.3171226
36.4761000
15.5088373
26.4784200
42.6085040
13.8077268%
18.1801718
38.8233000
213134680
28.0303018
40.9714260
ruam
137082818
23.0030284
7.0271043
21.9303420
20.6764706
21.0084848
281904788
49.1031740
149323810

PERSBORT

20.7079948
27.3707485
858504920
16. 7694575
22.216M76
39.6584320
21.0020491
24.791£283
46.3425640
214071730
29.5219966
§2.6108340
173804241
25.5608018
47.2551800
12.1702113
26.5029355
61.5422760
20.2130254
159808564
45. 154400
24.3073828
40.8742818
46.6000460
25 6360427
28.5620606
4£.2302140
15.4130612
31.3417308
46.7724820
12.7921809
20.5430114
31.3260520
22.5300100
246909643
46.8137100
10.2675313
10.8243%64
46.3851020
27.10562%8
3¢ 336440
410421020
12.620542
5. 421047
43.1342%00

0.8318382
21.7283048
44.5122%00
26.6507792
354078836
383260840
14.2323018

DELERR

1.1681834
4.4870651
8.140743¢
0.0231825
21314900
§.8856642
3.764968¢
2.5342203
6.2171946
1.3324289
0.5750652
3.47005M
1.7030959
2.0740805
§.60:5044
9.4642638
8.0225463
18.1051508
6.9514014
6.1601523
24.8747004
7.887278%
6.6660872
H.6HISH
10.0307107
7.521138)
167869040
5.19367%0
5.204930)
13. 7769088
17.479602]
120825181
18.034¢078
15.273M12
10.0754040
4].3880402
16.7133733
10.3088080
218780830
20.9123178
17.50%066¢
2873718228
114378308
114061544
21.142M%
20.8647080
202002070
17, 3543084
26.0387278
30. 4870403
31.52081%8
20.1283008

PERERE

30.9969455
41.5607145
73.621338¢0
30.6992040
425966500
7:.8564680
316641098
428284288
740202140
31.0408510
419738609
646292560
NN
42.66M564
7 .6776060
13.6552610
45.50710%8
80.3691780
32.79%08%0
44.570627
84. 4856900
33.0090885
441987038
763034360
33.8315635
44.6306436
76.8624200
32.2508060
43.6024718
T7.8420080
36.1200148
46. 2744445
81.7111420
358405040
48.2543088
07.9827780
36.031380%
45.7037104
03.0820040
37.3847358
48.7080627
880940420
340725048
46.47%8400
840472520
38.5985200
$3.0412082
784425000
38. 3090800
$4.1605227
05.0447120
38.7727260
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SAS

ANALYS]S OF VARJAMCE PROCEDURE

MEANS
cost SHOR?

27.546020  20.29220%%
44.035882  48.6363040
15.805030  24.2056340
17873041 346861484
20.933370  41.4523800
85.966324 4.4138723
130.428257 84739664
170693612 )1.6009664
47420356 159800207
86.360373  19.0721401
154.067180  12.2580468
16.101307  32.4935060
17.420388  20.3930382
27.241050  51.4285720
22.766305  26.7063497
23.412750  30.346318)
§2.080566  37.5250740
13.305022  32.5238005
16.580749  30.5090900
27.378848  53.3333300
333.718110 0.386666¢
112.185927 0.3030303
306.077680 1.7142858

cost SHORT

30.853670  11.3792636
46.060923 8.7280306
42.52530%  15.6528480
$2.102128  18.75%8000
74004228 2].8788230
23.700816  17.5481504
10.1038%2  18.4957080
29.672711  18.5320032
23.365822  25.6%12046
36431874 358501084
23.266M41  16.2201810
31.412087  16.933400)
31.116688  17.4%40610
25037108 22.5060631
42.928468  33.5604684
21357070 19.1081210
22.303260  24.1040244
24.000388 243814473
12.213608  26.4e%0217
30.6347149 344251400
108.584046 7.226%970
100.160343 1.9456580
103.134476 79489191
123.004000  11.1083030
126786387  14.1624164

PERSEOR?

26.2001736
39.1188420
32.8275536
27.1692995
37.6944460
12.2186063
161371193
33.8226220
<5 4502478
36.1151327
39.2117460
33.5494623
42.5574600
428972440
31051101
27.0636235
44.2174980
39.6820718
42.04625%5
53.5211560
5.4464285
7.97875M3
18777171774

PERSHOR?

16.2720060
16.3196106
26.6819516
25.7750088
46. 4903844
28.2176700
13.0394207
M.4472138
20.4425008
42.0082080
22.8213600
20.6720010
32.60607%0
2188824
45.1201880
28.5438471
30.0442133
35.3552420
10.59850m
46.2216024
13.066289)
11.9441838
241243104
100272548
37.3524583

16:3, WEDNESDAY. APRIL 1§ .09

DELERR PERERR

23.0644005  50.4077764
343645163 02.2171800
24.5120144  3E.0240930
221681112 50.3316238
368919077 96 2167460
22.6327448  3£.0225490
30.4507808  82.2641518
407741663 97.2513780
28.9722714 38.739825%
344916344 56.0122016
250267288 B 7592560
312422020 3b.6240215
38.8349952  57.7231982
12.050476¢  75.2093720
25.2873404 37 6059570
26.8580308  51.24521%%
4.084€172  65.0354740
JE.6410040  42.2555860
28.0107083  52.5937991
106828380  79.0061200
2¢.6517086  40.4027100
36.1346145  52.8487700
34.6773286  91.1520580

DELERE PERFRR

108061813 34.4807863
226653331  36.3440132
224171087 50.0428373
11.7851753  47.4627184
173487400 80.3046828
0.0437386  3¢.0533748
24.8576000 37 4498300
24.2028834  51.0519603
9.6437718  46.8742304
23.3074e12  63.7642036
0.5055401  M.1INME
22.2457861  36.435403%
18.242%608  47.9003807
0.5471515  46.54570%
16.1877480  70.0036476
11.6330871 3. M007X0
30.2632877  30.12834%0
16.9703182 401336850
10.5084124 470641104
21.5156450  82.3231M2
10.45720385  34.3580008
10.7663788  36.17010%0
22.9430425  40.4900380
74100840  43.7882380
232351481 84.7942000

3
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SAS

ANALYSIS OF VARIANCE PROCEDURE

€ostT

39.973650
29.171049
44.012005
39. 146046
4:.557320
45.807448
50.574365
46.827387
42.350140
35.9509096
44.220M31
36. 180756
423600423
40.580088
4432664
42.758497
40.186)14
41.243530
36.923232
29.609238
44541885
34958388
40.35168%
30.971836
#4.090382
22.875302
31.982200
30.887532
24541810
46.211230
23.048260
20.624220
34.552412
22012016
41.13%646
21.818810
25.3622%5
28.086482
23.451826
3
20.404236
21004248
13970560
20955046
33940106
26.50062)
3246122
33.123303
32.1330%
45.040%00
23.51M44
44086246

MEANS
SHOR?

11.52250m4
8.22226M2
11.5200620
1. 1107640
11.6600524
7.9473557
5.8574550
9.0428478
6.6809272
13.7125778
11.5264758
§.30019060
117770050
11.9088880
154767500
9. 7107544
110451177
11.0441537
11.1033764
12.2008760
B.895025¢
6.1267070
$.0853127
10.81344 14
12.2872814
10. 159204}
4.9960033
15.1020832
23.5314680
17.70355%¢
16.5120403
0.0747888
14.1301048
24.4166680
24.5350540
14.2933440
10.3072880
14.7194007
12.1030614
173378380
16.8727087
177382954
158600048
26.3712000
24.5616080
1102438020
11.1001802
19.1350728
10.7533540
212467518
13.04920%6
4.2361100

PERCRORT

21.1987563
1¢.9718528
28.7196783
25.1520280
§%.8504920
18.3264207
435120
26,2448
17.3856160
39.0584320
23.511183
172307082
27.4573633
21.593119¢8
46.3435040
21.9538850
20.5886374
33.6116062
24,6147
$2.8108340
18.5775025
15.584715
25.9567200
25.0822980
47.2551600
130344822
10.8739%50
21.1451082
30.0203404
61.5422760
23 8766187
14.7108006
36. 1304783
35. 1005100
45. 454400
245639485
23.0028380
47.3046150
330400820
466008460
21.0660004
324902082
26.9100477
305450180
45.2302140
13.471720
17.41089%0
3.0402108
27,378 1480
46.7724820
12.118m1
12.9023462

16:31 WEDNESDAY. APRIL. 16. 198%

DELERE

04345740
2.2685474
59194213
Fa T
6. 1407430
0.0614309
+4.0642786
45720048
-0.7982316
£.8258642
1.7767056
24070130
14211847
1.4698830
6.2171046
~0.4164007
3.95%6703
1.0320680
0.0208810
3.AMEN
1.8525249
1.7089524
2.6370778
1.4004642
58015044
7.17012M1
12.9045082
7.885634%
9.5088404
18.1851%06
4.108]227
11.1263198
7.7426608
4.2800218
24.0747004
£.346007¢
11.6682050
$.2100018
4.3005000
14.634353¢
6.7415143
14. 9845083
6.5104308
£.72)1608
16.7869040
3.2500187
8.0064739
4.0410673
3.8168521
13.71008%8
13.570%40!
23.3310818

FERFRE

31. 1669440
30.7419650
43.2480032
43. 4346880
73.62.3360

11506575
10.0220287
§2.7903300
42.3686560
71.8584680
32.2187286
3¢.83218%¢
42.34258%0
434114340
120202140
30.947927%
3
41.3470632
42.7254020
69.6262580
31.7013000
19 8758328
£2.0624333
43.3604840
71.677408¢
33.3093617
34. 1743600
44.40218%0
466330100
80.3691780
32.3324083
33.40121%0
44.7260063
44.3870000
846656900
32.7683823
13301812
42.6503507
45.0980840
78.3034360
33230810
34.7282062
£3.2192617
46.3243020
78.8624200
32.0687508
32.5481137
42.0921317
44.9400000
T .8420080
35.5018092
370478328

3
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153

ANALYSIS OF VARIANCE PRUCEDURE

cos?

39.875362
35.410032
§4.267344
!
25.621842
23.762530
1945700
39.825586
17017209
27.428461
26.402622
19.403852
36.500740
16.128342
18.477199
18.944413
16.369960
32.922102
25.163864
§3.930162
44.2795M
49.583430
62.1183%0
32.905423
50.003462
36.616265
40.200498
73.912086
16.826624
21.768736
24.619770
17.285160
38.400094
17.878703
32.920748
34.667767
18.999044
44.935882
14074018
17.218219
17.780807
17.986062
20.933370
78.323104
§7.431020
112.404303
152.082602
170.606912
35.090220
045.008%60
61.064922
121,1153%4

MEANS

SHOR?

9.7222217
13.2323238
36.4761900
14.6990733
16.7234837
12.4956233
36771711180
47.9965040
13.7037033
14. 1887612
14.9603167
21.9000980
36.8253960
21.9675017
20.8333325
22.6851833
344444440
40.5714260
0.9754082
2.9071970
§.0030157
10240546
23.6839264
7.0875424
0.1866471
203703700
23.8023084
29.6764708
16.8501933
24.7700212
18.2530667
35.7142860
45.3031140
14.6320367
15.4315475
16.3690478
25.0000000
48.6363640
20.4861100
30.0009200
36.5079350
32.9000000
41.4823800
$.9603004
2.00412301
§.2550387
9.732119¢
116008584
15.2777183
170436492
11.5476183
16.1015860

PERSHOR?

25.4506350
146558430
31.3260520
16.2604417
27.4268850
16.7324483
34.2601040
46.€131100
23.1301968
13.4735831
21.28%2183
16.0713220
493851620
313279012
22.4222126
16.9272638
45.3357900
41.0427820
171746408
5.8095247
17.3816603
35.0697800
43. 1342500
10.12¢7183
03866736
23.7330830
19.3182732
44.5122%60
30.9505042
25.2233507
42.644083)
16.1226740
35.3206040
145719613
13.7228876
344103267
165450000
391180420
289520828
38.6408082
35.0403367
17.7240%48
37.0044460
12.5063408
£1.7870050
287440487
7.6078484
33.8226220
22.2862328
314612700
34.3611933
38.2196600

16:3: WEDSESDAY APRIL 16,

DELERR

12.1901740
11.88732¢4
18.0346978
10.5042260
22.4262640
17.8465332
27302490
4..3889402
120829000
236560632
110751656
9.3849722
21.6760630
15.6526485
26.6018259
16.4019243
16.8305980
28.7375228
€.3680503
19.0611732
11.8176997
1. 0680600
2142754
11.2624813
347660495
326730193
2%.9615400
173543804
15.8702480
41.6330478
37. 3413203
22.2610042
31.52051%6
14.1325060
1.1143784
31.77301%
12.6560821
M.3645063
11.5336307
43.0795000
30.0116002
12.7555056
38.8010077
16.0564024
324072570
47. 1343488
10.4348870
40.774168)
21.384375]
40.0538185
$3.4163668
117819538

PEKERR

45.4614233
47.2140700
81.1711420
34.4303702
37.205016%
46.3004367
417867640
97.0527760
35.0275792
37.5370625
451661203
4€.5008220
81.8820340
361063683
30.1372882
47.200840C
$0.5072500
86.0v40420
33. 1048842
35.4041600
45.6010287
4 20%€180
840472520
3612820
39.2775375
§2.7852833
§2. 1484500
794425000
35.6812433
42.47581%0
$6. 1148083
51.8153080
80.0447120
354636000
38.7362800
82.6979000
47.6504280
92.2171800
34.0370273
42.6037912
$2.2108600
48.0669400
06.2197460
38.3837087
40.4956123
$e.7611163
46.0057020
07.2513780
37.6134283
40.4788712
63.2063017
47.2831740

1944

n
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HY i6:3: WEDNESDAY APEIL |b. 1065 M
ANALYEIS OF VAEIANCE PROCEDURE
MEANS

T80 L0OT VAR TYPE cosT SHORT PERSHOR? DELERR FEREEE

0 3 0 §  154.067180  12.3559466  36.2117480  25.0287266 € 7692560
10 2 ! ¢ 12 15.032089  25.9206342  33.6542769 102046565  J6.6720056
1 2 1 1 [ 17926786  36.3528137  33.2022004  49.163MT5 44 0541500
e 2 ? ¢ 6 19.601488  26.3333333  S0.4700433  53.0106195  63.3.70663
w2 2 ! H 14.822866  30.6666640  33.0540800  20.7440050  51.6:05540
02 3 0 5 27.241050  51.4285720  42.8072440  11.8504764  75.19393720
o3 1 0 12 14498465 26 9444450 283330208 12.636035Y 36 2¢E”TEE
0 3 i i & 15166067  26.3402080 35 0M47440 442588700  41.7317287
1 3 2 0 6 24.040146  29.4444450  32.0368515  36.7135613  56.611IR
1 3 2 1 5 22.659802  31.4205680  20.0i57500  15.6333502 4% 1981940
03 3 0 ] §2.069566  37.9250740  44.2174960 C.0G46172  66.0I54THC
0 4 i 0 12 12.519354  20.0444450  30.417384  24.6585487  Je.S€4ls0C
10 4 ) ! 8 14483524 40.8028562  40.5792050  50.6146937  47.7816950
0 4 2 [ 8 16053757 25.0000000  52.2886700  40.0312448  36.€747500
10 ¢ 1 1 H 14.832040  37.0900080  20.7577580  12.5060667  47.6086560
10 4 3 0 5 27.278848  53.3333300  §3.5211560  10.68:8380  7¢.00€:200
{0 1 ] 12 368.29:683 0.1 2.1250000 247402242 194518125
35 1 1 8 282.007750 ¢.5000000 §.9268712  37.5084352  41.8290562
(. 2 4 6 26491433 9555555 136888883  4€.2642210 58 1%L56%0
[ [ 2 ! §  346.232820 0.0030000 0.0000000 6.1550868 46 4704160
(N 3 0 5§ 306.077680 1042858 15.YTVVYNME M4.BYYII86 931520580




APPENDIX E

ANOVA RESULTS -- GROUP II DATA

The following text provides the code used in the SAS

routine. Output consists of all subsequent pages.

DATA;

INPUT SET TYPE VAR COFVAR TBO LOT COST SHORT
PERSHORT DELERR PERERR BIAS;

DROP TYPE VAR COFVAR BIAS;

CARDS;

PROC ANOVA;
CLASS SET TBO LOT;
MODEL COST SHORT PERSHORT DELERR PERERR = LOT TBO
SET LOT*TBO LOT*SET TBO*SET;
MEANS LOT / TUKEY E=LOT*SET;
MEANS TBO / TUKEY E=TBO*SET;
MEANS SET LOT*TBO LOT*SET TBO*SET / TUKEY;
TEST H=LOT E=LOT*SET;
TEST H=TBO E=TBO*SET;
OUTPUT OUT=PLOTDATA P=YPRED R=YRESID;
PROC UNIVARIATE NORMAL PLOT;
VAR YRESID;
PROC PLOT;
PLOT YRESID*YPRED;
PLOT YRESID*LOT;
PLOT YRESID*TBO;
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w

48 $3:07 TTESDAY MAY .
GENERAL LINEAR MODELS PROCEDUKE
CLASS LEVEL INFCRMATION

CLASS LEVELS  VALUES

SET H 12348
T8O H 246810
Lot 5 12345

WIMBZE OF U3SERVATIONS 1N DATA SE? = 125

fvey




DEPEXDENT VABIABLE: COST
SOURCE

WDEL

ERROR

CORRECTED TOTAL

SQURCE

o
T80
SET
TBOsLO?
SETeLOT
SETeTRO

23

80

(1}

124

oF

- N

ST OF SQUARES
$65030.40037689
2973776416453

594766. 16454142

TIPE 1 88

170805.81714428
Q1518.00144414
645949272261
246805 . 12529861
27499.52674268
21853, 44702457

MEAN SQUARE

9417.1733306)

157

SAS

GENERAL LIKEAL WODELS PROCEDURE

46465256507

F VALUE

91.90
49.24
.48
33.21
3.7
2.0

FVALTE

0.7

PEOF bF
0.000} 4
0.000! [}
0.0124 ¢
0.000) 16
0.000] 16
0.001} 16

ST OTTRELY MY O Lok

PR F E-SCUARE c.v.
¢.0001 0.950001 424200
ROOT IBE CoST MEAN

1.55560119

L LIS
17080¢.81714428
9151€.96 44414
645949272261
246895, 12520861
27499.52674268
21B53. 4470257

50.8042€25¢

FoVALLE

e
B3
-

91.90 0.000]

49.24 0.000]
.48 0.0l
1. 0.000}
3.7 0.000!
PR 0.0011




DEPENDENT VARIABLE

SOURCE
WODEL
ERROR

CORRECTED T0TAL

SOURCE

Lot
T80
SET
T804LOT
SETILOT
SE?s?80

: SHORT

DF

80

64

11

ST OF SQUARES
16197.45899103
§413.32004373

21610, 77903478

TPE I SS

4589.73883595
3084.87242157

380.04155767
444228461492
2040.80953608
165971222483

158

SAS

GENERAL LINEAR MODELS PROCEDURE

MEAN SQUASE

26995764985

84.58312588

F VALDE

13.57
9.12
1.12

]

R 1

a
s

——

PR F

0.0001
0.0001
0.353¢
0.0004
0.12¢7
0.273¢

F VALUE

319

13:27 TUESDAY. WAY 2. (988 3

P F

0.000%

BOOT MSE

9.19090848

TTPE 111 88

456073863595
3084.87242197

380.041557¢7
4442.28461402
204060952608
165971222443

1-5QUARE

0.749508

F VALTE
13.87

1.12

c.v.

56.2204

SHOR? MEAV

16. 35604909

PROF

0.0001
0.0001
0.3534
0.0004
0.1247
0.273¢
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SAS
GENEBAL LINEAK WODELS PROCEDURE

DEPENDENT VARIABLE: PERSEOR?

SOURCE DF STM OF SQUARES MEAR SQUARE F VALUE
MODEL [ 36667.6627092¢ 611.46104665 2.3
ERROR 64 1666608641667 265.40760026

CORRECTED TOTAL 14 53673.74921501

SOURCE DF TP LSS FVALIE B F
LoT 4 4415.85882687 416 0.0047 4
780 [] 34074987626 3.22 0.018¢ 4
SET ] 495596287772 4.67 ¢.0023 ]
180+L0T 16 439}.22305875 1.03 0.4340 16
SETeLOT 16 026:.27823573 .18 0.0146 16

SETTB0 (] 1024581032408 2.41 G.0067 16

13:27 TUESDAY. MAY 2. 1989 4

moF

0.0006

BOOT ISE

16.29133513

ToRE 11 S8

4415.85682667
341740857628
495594281172
435:.22305875
92627823573
10245.81032408

B-SQUARE c.v.
0.683531 56.3190
FPERSHORT MEAK
27.46351057

FILTE 130
416 0.0047

3.2% IR

4.4 £.0023

003 0.4340

2.18 0.014¢

2.4] 9.%087




DEPENDENT VARIABLE: DELERR

SOTRCE
WODEL
£RROR

CORRECTED TOTAL

SOURCE

L?
1730
SEt
TROSLOT
SETLOT
SET+TB0

DF

80

64

124

DF

- -

16
16

160

SAS 13:27 YUESDAY. MAY 2. 1989  §

GEWERAL LINEAK MODELS PROCEDURE

SUM OF SQUARES MEAN SQUARE F VALUE Pk F
45730.57098833 762.17633314 3.0 0.0001
16056.00994200 256.87518534 RO0T MSE
61786 .58993033 1583003897

TYPE I SS FVALTE ¥, F oF R IIL S¢S
1236.06194197 1.23 0.3055 4 1236.06194107
17706. 37837519 17.84 ¢.000! 4 17706 2N
12737. 4578276 12.6¢ ©.000] 4 12737.24878276
134514003183 0.3¢ 0.9911 16 1345.14093183
7350.04017087 1.83 0.0459 16 7350.04017087
£353.71368571 1.3 0.2053 16 §153.7136857}

B-SQUARE

0.740134

FaLl

1L
17.44
12.69
0.3
1.83
]

cv

61.7683

DELERE MEAR

2564302820

¥

0.305%
£.0001
60001
C.99i!
¢.0450
0.2083




DEPENDENT VARIABLE: PERERR

SOURCE

MODEL

EREOR

CORRECTES T0TAL

SOURCE

Lor
180
SEY
1800107
SETeLOT
SETVTBO

oF

L]

1}

124

16

161

SAS

GENERAL LINEA® MODELS PKOCEDURE

SUM OF SQUARES MEAN SOUARE
13415.1881231] 223.59645872
1875.25080257 26.3007952¢0

15291.03901568

PE 1SS FILTE PEoF

142.06486092 1.2 0.3144
1701.34034705 14.52 0.000!
99016.78741080 B4.64 0.000}

148. 12026649 ¢.32 0.9935
853.60554973 1.82 0.0474
0650.85968830 1.3 0.1763

FALTE

7.63

13:27 POESLAY. MAY 1. lvg9 ¢

e F
0.0003
3007 MSE

§.41302080

IYRI 1SS

14206486092
170134034708
9913.78741060

148.12026649

853.60454973

650.85968830

B-SQUARE c.v.
0.877363 14,4659
PERERE MEAN

3741006584

FYAR R

1.21 .34
14.52 €.000!
84 .64 0.000}

[B] 0.903%

1.82 0.047¢

iy 0.1763
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SAS
GENERAL UINEAR MODELS PROCEDUEE
TOKEY'S STUDENTIZED RABGE (ESD: TEST FOR VARIABLE: C08T
NOTE: TRIS 7EST CONTROLS THE TYPE ! EYPERIMENTWISE ERKO: RATE.
BOT GENERALLY HAS & HIGHEK TYPE 11 ERROR RATE THAK REOWQ
ALPHA=0.0% DF:if MSE=1714.72
CRITICAL VALUE OF STUDESTIZED RANGE:=4.333
NINIMUM SISNIFICANY DIFFEEENCE=35 524

MEAES WITE TEE SAME LETTER ARE NOT SIGRIFICANTLY DIFFERENT.

TUKEY  GEOUPING MEAK | o
i 121.43 2% 5
] §4.29 %1
B
B 2.92 24
]
8 %N ® 3
B
B 2%.82 %2

YE0n TUEEDAY

WY L

yky

-
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SAS 137 CWEIIAY MAY L. Ges:

GEFERAL LINEAR WODELS PROCEDURE

TUKEY'S STUDENTIZED RANGE (HSI TEST FOR VARIABLE: SHORT
BOTE: TEIS TEST CONTROLS THE TYPE ! EXPERIMEETWISE EREOR RATE.
BUT GENEBALLY EAS A HIGHEE PYPE ! EEROR RATE THAN KEOW

ALPHA20.05 DF=1§ MSE=127 85}
CRITICAL VALUE OF STUDEWTIZED RANE=4.333
MININTM SIGNIFICANT DIFFERENCE=0 7803

EANS WITK THE SAME LEYTER AKE MOT SIGEIFICANTLY [IFFERENT

YOREY  GROTPING EAN §oLr

[} ;.13 % ¢
A
[} 21.27 2% 3
[}
[} 19.551 %4
A

L] A 12.623 %)

B

B €.300 %5

[}
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SAS

GEKERAL LIMEAR MODELS PROCEDURE

TUKEY'S STUDENTIZED RANGE (ESD! TEST FOR VABIABLE:

13:27 TURSDAY. MAY D, 145§

PERSEORT

¥OTE: THIS TEST CONTROLS THE TYPE | EXPERIMENTWISE ERROR RATE.
BOT GENERALLY BAS A HIGHER TYPE 1] ERBOR RATE THAN REGW

ALPEA=0.05 DF:16 MSE-576.83

CRITICAL VALUE OF STUDENTIZED RANGE=4.333

MIINUM SIGEIFICANT DIFFERENCE=20.047

MEANS WITE TEE SAME LETTER ARE MOT SIGKIFICANTLY DIFFERENT.

TUKEY  GROGPING AN ¥
A 35814 28
A
[} n.e2 8
[
) 29.800 5
[
[} 24057 2%
A
[} 17.467 25

Lor

4

o
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SAS
GEWERAL LIFEAE MODELS PROCEDURE
TUNEY'S STUDENTIZED RANGE (ESD) TEST FOR VARIABLE: DELERR
NOTE: THIS TEST CONTROLS THE TYPE ! EXPERIMENTWISE ERROR BATE.
BUT GEWERALLY HAS & RIGHER YYPE ]I EEROK BATE THAX REGWG
ALPHA=0.05 DF:1¢ MSE=459.378
CBITICAL VALDE OF STUDEWTIZED BANGE:4.333
MININDM SIGRIFICANT DIFFERENCE=18.372

MEANS WITH TEE SAME LETTER ARE NOT SIGNIFICANTLY DIFFEEENT.

TUKEY  GROVEING N | Iy
[ 29.016 % 1
A
[ 26.264 % 3
A
[} 28,742 %2
[}
) :3.671 2% 4
)
A 20.526 %8

1%.0%

TUESDAY. MAY 2

{11

6
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SAS
GEMERAL LINEAK MODELS PROCEDDRE
TOKEY'S STUDENTIZED RAMGE (HSD) YEST FOR VARIABLE: PERERS
NOTE: TEIS TEST COKTROLS TEE TYPE I FYPERIMENTRISE ERROE RATE.
BUT GENERALLY HAS & HIGHEE TYPE 1! ERROR BATE THAK EEGW
ALPHA=0.05 DFz16 MSEz52.3504
CRITICAL VALUE OF STUDEWTIZED RAMGE=4.333
MIKIMUX SIGNIFICANT DIFFERENCE=¢.3202

IEANS WITE TEE SAME LETTER ARE NOY SIGKIFICANTLY DIFFEREN?.

TUKEY  GROCPING Ea kLot
[ 38.938 %1
i
A 3g.168 %3
[}
i 17.482 2% 2
A
[ 36.47¢ %4
i
) 36.084 %S
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SAS
GENERAL LIMEAK MODELS PROCEDURE
PUKEY'S STUDENTIZED BAWGE (HSD) TEST FOR VARIABLE: COST
NOTE: THIS TEST CONTROLS YHE TYPE | EXPEKIMENTWISE ERKOK RATE.
BUY GEWERALLY BAS A HIGRER TYPE i] ERROK RATE THAN REGW
ALPAAZ0.05 DF=16 MSE<1365 8¢
CBITICAL VALUE OF STUDENTIZEL RANGE:=4.33)
WINIMUY SIGNIFICANY DIFFEREWCE=32.024

MEANS WITH TEE SAME LETTER ARE NOT SIGNIFICARTLY LIFFERENT.

TUKEY  GROUPING EL N TBO

[ 102.18 %10
] 8.4 %8

]

] 38.05 %2

]

B 32.86 2% 8

B

8 2”70 25 4

130% ESLAY

MY D

28y
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SAS
GENERAL LINEAR MODELS PROCEDURE
TOKEY'S STUDENTIZED RANGE (BSD) TEST FOR VARIABLE: SHORT
WOTE: THIS PEST CONTROLS TEE TYPE | EYPERIMENTWIST EEROE HATE.
BUT GENERALLY HAS & EIGHEE TYPE I EEROK RATE THAK REGWQ
ALPBAz0.05 DF=16 MSE=103.132
CEITICAL VALUE OF SYODENTIZEL RANGE=4. 3133
MINIWUM SIGNIFICANT DIFFERENCE=E 8254

MEANS WITE TEE SAME LETTER ARE MCT SIGNIFICANTLY [IFFEREN?

TUNEY  GROUXING MEAY | +:4

[} 2%.38% ¥
[
[ 19.672 ¥ 8
A
) 1¢.927 %6
[

] [} 14.76¢ %4

B

L] 7.65¢ %2

13:0% TEELAY

[ 139

RTH
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SAS
GERERAL LIFEAK MODELS PROCEOURE
TUKEY'S STUDEWTIZED RAMGE (HSD) YEST FOR VABIABLE: PERSHORT
¥OTE: THIS TEST CONTROLS THE TYPE | EXPERIMENTWISE ERROR RATE.
BUT OENERALLY HAS A H[GHES TYPE [ ERBOR EATE THAN REGWQ
ALPHAZ0.05 DF:z16 MSE=640.363
CRITICAL VALUE OF STUDENTIZEDL RANGE=4.333
NININUR SIGNIFICANT DIFFERENCE=2!.928

MEAUS v 1Y THE SAME LETTER ARE NOT SIGRIFICANTLY DIFFERENT.

TUKEY  GROTPING IEAN X T8O
[ 38.66) %10
i
i 30.453 %8
A
[ 26.20% %8
[}
] 2.8m 2% 2
[}
[ 20.921 % ¢

13:27 TUESDAY. MAY 2. 1068

i
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SAS 13:27 TUECCAT AT I (99 1S
GENERAL LINEAR MODELS PROCEDURE
SUXEY'S STUDENTIZED RANGE (ESD) TESY FOR VARIABLE: DELERR
NOTE: TEIT TEST CONTROLS YEE TYPE | EXPERIMENTWISE ERR(E RATE.
BT GENERALLY HAS A HIGHE® TYPE I! ERRCR RBATE TEAN REGWQ
ALPHAZ0. 0% DF:16 MSE=334 607
CRITICAL VALUE OF STUDENT!ZED RANOE=4.333
MININUW SIGWIFICANT DIFFERENCE:15. 851

MEANS WITE THE SAME LETYER ARE NOT SIGEIFICANTLY DIFFZRENT.

TUKEY  GECTPING AR L

A 38.4% %10
)
A 37.083 % 8
)

B [ 26.033 %6

B

] ¢ 20.67% 54

4 §.950 %2
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SAS
GENERAL LINEAR MODELS PROCEDURE
TOKEY'S STYDENTIZED RANGE (HSDs TEST FOP VARIARLE- PERZRE

BOTE- TEIS TES? CONTROLS THY TYPE | EXPERIMENTWISE ERRTE RATE.
BOT GENERALLY BAS » BIGHER TYPE [ ERBOE RATE THAN ESGHQ

ALPHA=0.05 DF:1¢ MSE=4( 6787
CRITICAL VALUE OF STUDENTIZED RANGE=4.333
MINIMUM SIGNIFICANT DIFFERENCE=5 5266

MEAKS WITH THE SAME LETTER AEE NOT SIONIFICANTLY DIFFIRENT.

PONEY  GROUTING [ [ 1S
A 4141 2% 10
A
] 4258 2k 8
)
A 1.0 € ¢
)
i 16 946 %4

w w o
=3
3
ord
ol
~
T
~

(217 oEELAY

| T30

[gke

1
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H

GENERAL LINEAR MODELS PROCENURE

TUYEY'S STUDEETIZED RANGE (HSD' TEST FOR VARIASLE- 08T
NOTE- THIS TEST CONTROLS TEE TYPE ! EVPERIMEWTNIST ERRGE RATE.
BTT GENERALLY HAS 4 HIGHEF TYPE Il ERROE RATE THAY BEGW

ALPHAz0.0%5 DF=64 MSE=464 453
CEITICAL VALUE OF STULENTIZE! HANAE=3 970
WIN1MEN SIGNIFICANT DIFFERENCE=]T.))4

MEAKS WITH TEE SAME LETTER ARE NOT SIGKIFICANTLY LIFFERENT.

TUKEY  GROTRING A PR
A 60157 €4
A
A S& 958 %3
[
[} 4£.910 W2
i
[ 60 %1
[}
A [KB-H %0t
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SAS W30t TUESIAY WAV 1. lgE9
GENERAL LINEAR MODELS PROCEDURE
TUKEY'S STUDERTIZED RANGE (HSDr TEST FOR VARIABLE- SHORT
NOTE: THIS TEST CONTROLS THE TYPE ! EXPERIMENTWISE ERBOR KATE.
BUT GENERALLY HAS 4 BIGHEE TYPE I! ERROE RATE THAN REGWQ
ALPEAz0.05 DF=64 MSE:B4.583)
CKITICAL VALUE OF STUDENTIZEL RANGE=3.870
MIX!NUK SIGRIFICANT DIFFERENCE=T.30i¢

MEANS WITH THE SAME LETTEE ARE NO? SIGEIFICANTLY DIFFERZNT.

TOREY  GROUPING EAY ¥ SET
[} 1€.38¢ €3
]
A 16,637 2% 4
)
A 16.026 %2
A
) 15.008 % 8
[
) 14424 2% !
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Y

GEVZRAL LINEAE MODELS PHOCESURE

TUYZY'S STUDENTIZED MAMGE (HSD TEST FOR VARIAELE: PERSEDRT

EARE WD

= e e o

o mm e w
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SAS 13007 TUZELAY maY [ legd
GENERAL LINEAR MODELS PBOCEPURE
TUKEY'S STUDENTIZEL KANGE (RSDt TEST FOX VARIABLE: DELERR
WOTE: THIS TEST CONTEOLS THE TYPE | EYPERIMEXTWISE ERROL RATE.
EUT GENERALLY HAS & HIGHER TYPE !D ERROE RATT THAN XSO
ALPHAz0.05 DFx64 MSE=250.875
CRITICAL VALUE OF STUDENTIZEDL RANGE:=3.970
KINIMDM SIGNIFICANT DIFFERENCE=1Z §75

MEANS WITE THE SAME LETTEL AKE KO? SIGNIFICAKTLY DIFFIRENT,

TUKEY  GROUPING Ax -1 n

[ 3£.232 2%
[}

B [ 320 ¥ 2

B [

B ) 27.658 %1

B

B 2..5% %5

¢ §.662 %}
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1Y 13:07 TUTEIAY. MAY [ @9 L
GENERAL LINEAR MODELS PROCEDURE
YOKEY'S STUDENTIZED RANGE (HSD) TEST FOE VAEIASLE: PERERK
WOTE: THIS YEST CONTROLS THE TYPE | ENPERIMERTWISE EHEOL RATE.
BUT GENEBALLY HAS A EIGHER TYPE [} ERROY BATE THAN BEGWQ
ALPRA=0.05 DF=64 MSE=20 3008
CRITICAL VALUE OF STUDENTIZED RANGE:3.970
MIKINOM SIGNIFICANT DIFFERENCE=4.2076

MEANS WITE THE SAME LETTER ABE ¥OT SIGKIFICANTLY DIFFERENT.

TOKEY  GROU?ING EA ¥ SEY
A s %12
L] 3014 %4
B
8 36.155 % $
¢ 20.608 25 |
¢

¢ 27.502 2% 3




VAR]ABLE=YRESID
WMENTS

1 125 SUM wots 125
Eu 6.4728-13 SM 8.091E-11
ST DEY 15.488) VARIANCE 235.821
SKEWNESS  -0.250600 KURTOSIS 1.43372
oss 20737.8 (S8 201018
cY 99996  STD MEAN 1.38812
TMEAN=0  4.673E-11 PROBY'TS 1
SG¥ RANK 64.5 PROB)'S’ 0.8747
oM s 0 125
D:NORMAL  0.0755447 PROBID 0.08
STEM LEAF L]

[} 1

4

3s 1

kL] 2

2168 2

20134 4

1 566578808 §

011123444 [

0 55556677777788898 17

0 1111112222223344444 19

-0 433222222221110 18

-0 D900888777706665 16

-1 $44433321100000 15

-1 TITT1666 8

-2

-27 1

-3 10 k]

-3

-4 40 1

-4 68 2

coecbascaponcnpoccny

MOLTIPLY STEM.LEAF BY 10#¢+0)

BOXPLOT

oo o

177

SAS

URIVARIATE

Wy lolees 22

QOANTILES (DEF=4) SYTICES

1002 MAX 46 43 44 44.3208 LOWES?  BIGHEST
75 Q3 845960 951 25.2995 -45.9912 28.3848
S0% MED  0.720611 901 17,6527 -4 6433 3..0822
22 Q! -8.9617¢ 101 -16.2704 -43.999¢ 34.002
01 MIN  -45.0912 18 -26.1132 -39.847 32.3373
i1 -45.978% R Y] 4841

BANGE 924252

03-a1 17.4514

MODE -45.9912

NORMAL PROEASILITY PLO?
47.9¢ '
Reed
ree
(13
(21}
[T211]
14
e
(1212
(11]
ep
rreere
feeeee
*ete
L221)
e M
2
~47.5¢0 2
-1 0 ¢l L4}
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SAS 12:07 PTECOAY MAY L. lgey 23

LOT OF YRESILeYPRED  LEGEWD: A = ! 0BS. B = 2 OBS. EC.

YRESID °
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A
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[} MALL A M [}
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[} i [}
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: (YT T W |
‘ [T13 [
i B4
+
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i
. i
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.—te e Sy
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1985 1

.

MAY 2

13:2* TTESHAY

SAS

: 0BS. ETC.

LEGEND: &=} 0BS. B =

PLOT OF YRESIDILOT

TRESID ©
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ag

PRI

[N
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